Stability-based model for evacuation system using agent-based social simulation and Monte Carlo method

Author(s):  
Makhlouf Naili ◽  
Mustapha Bourahla ◽  
Mohamed Naili
Author(s):  
Hocine Chebi

This work presents a new approach based on the use of stable dynamic models for dynamic data mining. Data mining is an essential technique in the process of extracting knowledge from data. This allows us to model the extracted knowledge using a formalism or a modeling technique. However, the data needed for knowledge extraction is collected in advance, and it can take a long time to collect. The objective is therefore to move towards a solution based on the modeling of systems using dynamic models and to study their stability. Stable dynamic models provide us with a basis for dynamic data mining. In order to achieve this objective, the authors propose an approach based on agent-based models, the concept of fixed points, and the Monte-Carlo method. Agent-based models can represent dynamic models that mirror or simulate a dynamic system, where such a model can be viewed as a source of data (data generators). In this work, the concept of fixed points was used in order to represent the stable states of the agent-based model. Finally, the Monte-Carlo method, which is a probabilistic method, was used to estimate certain values, using a very large number of experiments or runs. As a case study, the authors chose the evacuation system of a supermarket (or building) in case of danger, such as a fire. This complex system mainly comprises the various constituent elements of the building, such as rows of shelves, entry and exit doors, fire extinguishers, etc. In addition, these buildings are often filled with people of different categories (age, health, etc.). The use of the Monte-Carlo method allowed the authors to experiment with several scenarios, which allowed them to have more data to study this system and extract some knowledge. This knowledge allows us to predict the future situation regarding the building's evacuation system and anticipate improvements to its structure in order to make these buildings safer and prevent the greatest number of victims.


1974 ◽  
Vol 22 ◽  
pp. 307 ◽  
Author(s):  
Zdenek Sekanina

AbstractIt is suggested that the outbursts of Periodic Comet Schwassmann-Wachmann 1 are triggered by impacts of interplanetary boulders on the surface of the comet’s nucleus. The existence of a cloud of such boulders in interplanetary space was predicted by Harwit (1967). We have used the hypothesis to calculate the characteristics of the outbursts – such as their mean rate, optically important dimensions of ejected debris, expansion velocity of the ejecta, maximum diameter of the expanding cloud before it fades out, and the magnitude of the accompanying orbital impulse – and found them reasonably consistent with observations, if the solid constituent of the comet is assumed in the form of a porous matrix of lowstrength meteoric material. A Monte Carlo method was applied to simulate the distributions of impacts, their directions and impact velocities.


Author(s):  
Makoto Shiojiri ◽  
Toshiyuki Isshiki ◽  
Tetsuya Fudaba ◽  
Yoshihiro Hirota

In hexagonal Se crystal each atom is covalently bound to two others to form an endless spiral chain, and in Sb crystal each atom to three others to form an extended puckered sheet. Such chains and sheets may be regarded as one- and two- dimensional molecules, respectively. In this paper we investigate the structures in amorphous state of these elements and the crystallization.HRTEM and ED images of vacuum-deposited amorphous Se and Sb films were taken with a JEM-200CX electron microscope (Cs=1.2 mm). The structure models of amorphous films were constructed on a computer by Monte Carlo method. Generated atoms were subsequently deposited on a space of 2 nm×2 nm as they fulfiled the binding condition, to form a film 5 nm thick (Fig. 1a-1c). An improvement on a previous computer program has been made as to realize the actual film formation. Radial distribution fuction (RDF) curves, ED intensities and HRTEM images for the constructed structure models were calculated, and compared with the observed ones.


2020 ◽  
Vol 86 (7) ◽  
pp. 45-54
Author(s):  
A. M. Lepikhin ◽  
N. A. Makhutov ◽  
Yu. I. Shokin

The probabilistic aspects of multiscale modeling of the fracture of heterogeneous structures are considered. An approach combining homogenization methods with phenomenological and numerical models of fracture mechanics is proposed to solve the problems of assessing the probabilities of destruction of structurally heterogeneous materials. A model of a generalized heterogeneous structure consisting of heterogeneous materials and regions of different scales containing cracks and crack-like defects is formulated. Linking of scales is carried out using kinematic conditions and multiscale principle of virtual forces. The probability of destruction is formulated as the conditional probability of successive nested fracture events of different scales. Cracks and crack-like defects are considered the main sources of fracture. The distribution of defects is represented in the form of Poisson ensembles. Critical stresses at the tops of cracks are described by the Weibull model. Analytical expressions for the fracture probabilities of multiscale heterogeneous structures with multilevel limit states are obtained. An approach based on a modified Monte Carlo method of statistical modeling is proposed to assess the fracture probabilities taking into account the real morphology of heterogeneous structures. A feature of the proposed method is the use of a three-level fracture scheme with numerical solution of the problems at the micro, meso and macro scales. The main variables are generalized forces of the crack propagation and crack growth resistance. Crack sizes are considered generalized coordinates. To reduce the dimensionality, the problem of fracture mechanics is reformulated into the problem of stability of a heterogeneous structure under load with variations of generalized coordinates and analysis of the virtual work of generalized forces. Expressions for estimating the fracture probabilities using a modified Monte Carlo method for multiscale heterogeneous structures are obtained. The prospects of using the developed approaches to assess the fracture probabilities and address the problems of risk analysis of heterogeneous structures are shown.


Sign in / Sign up

Export Citation Format

Share Document