Review of buckling restrained braces for earthquake resistant design of industrial structures in India

2022 ◽  
Vol 12 (1) ◽  
pp. 77
Author(s):  
Bhavinkumar S. Shah ◽  
Vijay R. Panchal
1983 ◽  
Vol 1983 (339) ◽  
pp. 127-136 ◽  
Author(s):  
Yoshio OHNE ◽  
Hidehiro TATEBE ◽  
Kunitomo NARITA ◽  
Tetsuo OKUMURA

Author(s):  
GENE F. SIRCA ◽  
HOJJAT ADELI

In earthquake-resistant design of structures, for certain structural configurations and conditions, it is necessary to use accelerograms for dynamic analysis. Accelerograms are also needed to simulate the effects of earthquakes on a building structure in the laboratory. A new method of generating artificial earthquake accelerograms is presented through adroit integration of neural networks and wavelets. A counterpropagation (CPN) neural network model is developed for generating artificial accelerograms from any given design spectrum such as the International Building Code (IBC) design spectrum. Using the IBC design spectrum as network input means an accelerogram may be generated for any geographic location regardless of whether earthquake records exist for that particular location or not. In order to improve the efficiency of the model, the CPN network is modified with the addition of the wavelet transform as a data compression tool to create a new CPN-wavelet network. The proposed CPN-wavelet model is trained using 20 sets of accelerograms and tested with additional five sets of accelerograms available from the U.S. Geological Survey. Given the limited set of training data, the result is quite remarkable.


1975 ◽  
Vol 101 (7) ◽  
pp. 1349-1366
Author(s):  
Anil K. Chopra ◽  
C-Y. Liaw

2021 ◽  
pp. 875529302110382
Author(s):  
Alan Poulos ◽  
Eduardo Miranda

A new measure of ground motion intensity in the horizontal direction is proposed. Similarly to other recently proposed measures of intensity, the proposed intensity measure is also independent of the as-installed orientation of horizontal sensors at recording stations. This new measure of horizontal intensity, referred to as MaxRotD50, is defined using the maximum 5%-damped response spectral ordinate of two orthogonal horizontal directions and then computing the 50th percentile for all non-redundant rotation angles, that is, the median of the set of spectral ordinates in a range of 90°. This proposed measure of intensity is always between the median and maximum spectral ordinate for all non-redundant orientations, commonly referred to as RotD50 and RotD100, respectively. A set of 5065 ground motion records is used to show that MaxRotD50 is, on average, approximately 13%–16% higher than Rot50 and 6% lower than RotD100. The new measure of intensity is particularly well suited for earthquake-resistant design where a major concern for structural engineers is the probability that the design ground motion intensity is exceeded in at least one of the two principal horizontal components of the structure, which for most structures are orthogonal to each other. Currently, design codes in the United States are based on RotD100, and hence using MaxRotD50 for structures with two orthogonal principal horizontal components would result in a reduction of the ground motion intensities used for design purposes.


Sign in / Sign up

Export Citation Format

Share Document