earthquake resistant
Recently Published Documents


TOTAL DOCUMENTS

987
(FIVE YEARS 217)

H-INDEX

28
(FIVE YEARS 3)

Author(s):  
Bayi Bage

Abstract: In India, about 50-60% of the total area is vulnerable to the seismic activity. Earthquakes are the vibrations or the motion of the ground due to release of energy. The vibrations or ground motion are the important factors to analyze and design, the earthquake resistant structure. So, to reduce the impact of earthquake different efforts has been done in this field. Basically, earthquake exerts lateral as well as vertical forces so to dissipate those forces and the vibration in system earthquake resistant structure has been design. The design of earthquake resistant structures depends on providing stiffness, strength and inelastic deformation which withstand the earthquake forces. As the height of the structure increases the lateral loads acted on the structure increases and decrease in the stiffness, so to counteract those shear walls and different damping devices has been used. Keywords: IS Code 1892-Part-1:2016; U - Section, Z- Section, H-Section, T-Section


Author(s):  
S. P. Kotecha

Damping performs essential function in format of earthquake resistant structures, which lower the change of the shape when they are subjected to lateral loads or earthquake. In the existing study fluid viscous dampers (FVD) are used to consider the response of RCC buildings on sloping ground. The important challenge of a structure is to endure the lateral loads and switch them to the foundation and to control the story displacement. In order to make structure earthquake resistant, (FVD) have been used. The building is modeled in ETAB 2018 and modeled with different location of FVD. After the study results show building with fluid viscous dampers (FVD) at diagonal bracing shows better performance.


Author(s):  
Sumirah Nisar

Abstract: Retrofitting is the modification of existing structures to make them more resistant to seismic activity, ground motion etc. Many of the existing reinforced concrete structures throughout the world are in urgent need of rehabilitation, repair or reconstruction because of deterioration due to various factors like corrosion, lack of detailing, failure of bonding between beamcolumn joints etc. Fibre Reinforced Polymer (FRP) composite has been accepted in the construction industry as a promising substitute for repairing and in incrementing the strength of RCC structures. It stabilizes the current structure of buildings and making them earthquake resistant. This paper presents a representative overview of the current state of using FRP materials as a retrofitting technique for the structures not designed to resist seismic action. It summarizes the scopes and uses of FRP materials in seismic strengthening of RCC structures and masonry retrofitting. Keywords: Retrofitting, Rehabilitation, Seismic damage, fibre


Author(s):  
Varun Mahajan

Abstract: Architects nowadays develop attractive edifices, and floating columns are widely employed in this process. Floating columns are used not only to provide a magnificent perspective but also when a vast open area is necessary. Edifices with irregular configurations are more vulnerable to earthquakes and hence, suitable shear wall placement is required to ensure the edifice's stability. Many multi-storey edifices collapsed in seconds after the Bhuj Earthquake (Jan 26, 2001), due to the presence of soft stories, floating columns, and mass anomalies. As a result, knowing the seismic reactions of these buildings are vital for constructing earthquake-resistant assemblies. The relevance of a Floating Column and the existence of a shear wall in an irregular multistorey building is highlighted in this study. Dynamic seismic behaviour of a G+18 irregular edifice with different locations of the floating column and different positions of the shear wall is explored in this research. The edifice is analysed and compared with the model without shear walls and floating columns to examine the alterations. The dynamic analysis is carried out using Response Spectrum Analysis and storey drift, storey displacement and base shear are calculated and finally, software compression is computed for different zones. The analysis is carried out by Indian standardized codes IS 1893:2016 and IS 456:2000 which are the codes specified by the Bureau of Indian Standards for earthquake resistance edifice design and plain and reinforcement concrete design respectively. Keywords: Floating Column, Shear Wall, Irregular Edifice, Seismic behaviour, Response Spectrum Analysis, storey drift, storey displacement, base shear.


IARJSET ◽  
2021 ◽  
Vol 8 (12) ◽  
Author(s):  
V.Santhana Lakshmi ◽  
K. Latha
Keyword(s):  

2021 ◽  

As a promising composite structure, gangue concrete filled steel tubular (GCFST) column exhibites favarable characteristics including high strength and economic efficiency. This paper conducted numerical investiagations on structural behavior of a ring-beam connection to GCFST column with concrete beam under cyclic loading. Furthermore, finite element models of column-beam connections were developed using ABAQUS and validated against full-scale experimental tests to identify accuracy of selected modeling approaches. Using these validated models, stress distribution of each component was examined to study the force-transferring mechanism among the components and failure modes of the ring-beam connection. Research study indicated that the ring-beam connection showed a reasonable force-transferring mechanism under cyclic loading and the remarkable earthquake-resistant performance with high capacity and acceptable ductility. Finally, parametric studies were performed to assess the influences of beam-to-column stiffness ratio,steel ratio, axial load level, and concrete compressive strength on connection cyclic behaviors. Parametric studies provided some suggestions and references for the application of the ring-beam connection in various engineering projects.


Sign in / Sign up

Export Citation Format

Share Document