seismic hazards
Recently Published Documents


TOTAL DOCUMENTS

277
(FIVE YEARS 68)

H-INDEX

20
(FIVE YEARS 2)

2022 ◽  
Vol 11 (1) ◽  
pp. 1-12
Author(s):  
Slim Aliouet ◽  
Fetheddine Melki

The region of Metlaoui (South Atlas of Tunisia) is listed as one of the major seismotectonic zones of the national territory. About 10 major seismic events with moderate magnitude have occurred from the beginning of last century. The event of 7/11/1989 (Ms = 4.4) was undoubtedly the most important. It caused very significant material damage estimated at 224,525,000 Tunisian Dinars. This study uses a mapping tool to define areas with relatively high degrees of hazard and vulnerability. It also seeks to understand the active fault of the seismic events recorded in this region.


Heliyon ◽  
2021 ◽  
Vol 7 (12) ◽  
pp. e08520
Author(s):  
Mohammed Alrubaidi ◽  
Mohammed S. Alhaddad ◽  
Sulaiman I.H. Al-Safi ◽  
S.A. Alhammadi ◽  
Abobaker S. Yahya ◽  
...  
Keyword(s):  

2021 ◽  
Vol 9 ◽  
Author(s):  
Xiaoming Xu ◽  
Zhifeng Ding ◽  
Li Li ◽  
Fenglin Niu

As an important segment of the North China Craton, the Trans-North China Orogen (TNCO) has experienced strong tectonic deformation and magmatic activities since the Cenozoic and is characterized by significant seismicity. To understand the mechanism of the crustal deformation and seismic hazards, we determined the crustal thickness (H), Vp/Vs ratio (κ) and crustal anisotropy (the fast polarization direction φ and splitting time τ) beneath the TNCO and its adjacent areas by analyzing receiver function data recorded by a dense seismic array. The (H, κ) and (φ, τ) at a total of 309 stations were measured, respectively. The Moho depth varies from ∼30 km beneath the western margin of the Bohai bay basin to the maximum value of ∼48 km beneath the northern Lüliang Mountain, which shows the positive and negative correlations with the elevation and the Bouguer anomaly. The average φ is roughly parallel to the strikes of the faults, grabens and Mountains in this study area, whereas a rotating distribution is shown around the Datong-Hannuoba volcanic regions. Based on the φ measured from the Moho Ps and SKS/SKKS phases, we propose that the crustal deformation and seismic hazards beneath the TNCO could be due to the counterclockwise rotation of the Ordos block driven by the far-field effects of the India-Eurasian collision.


2021 ◽  
Author(s):  
Gang Hui ◽  
Shengnan Chen ◽  
Fei Gu

Abstract Recently, the elevated levels of seismicity activities in Western Canada have been demonstrated to be linked to hydraulic fracturing operations that developed unconventional resources. The underlying triggering mechanisms of hydraulic fracturing-induced seismicity are still uncertain. The interactions of well stimulation and geology-geomechanical-hydrological features need to be investigated comprehensively. The linear poroelasticity theory was utilized to guide coupled poroelastic modeling and to quantify the physical process during hydraulic fracturing. The integrated analysis is first conducted to characterize the mechanical features and fluid flow behavior. The finite-element simulation is then conducted by coupling Darcy's law and solid mechanics to quantify the perturbation of pore pressure and poroelastic stress in the seismogenic fault zone. Finally, the Mohr-coulomb failure criterion is utilized to determine the spatial-temporal faults activation and reveal the trigger mechanisms of induced earthquakes. The mitigation strategy was proposed accordingly to reduce the potential seismic hazards near this region. A case study of ML 4.18 earthquake in the East Shale Basin was utilized to demonstrate the applicability of the coupled modeling and numerical simulation. Results showed that one inferred fault cut through the Duvernay formation with the strike of NE20°. The fracture half-length of two wells owns an average value of 124 m. The brittleness index deriving from the velocity logging data was estimated to be a relatively higher value in the Duvernay formation, indicating a geomechanical bias of stimulated formation for the fault activation. The coupled poroelastic simulation was conducted, showing that the hydrologic connection between seismogenic faults and stimulated well was established by the end of the 38th stage completion for the east horizontal well. The simulated coulomb failure stress surrounding the fault reached a maximum of 4.15 MPa, exceeding the critical value to cause the fault slip. Hence the poroelastic effects on the inferred fault were responsible for the fault activation and triggered the subsequent ML 4.18 earthquake. It is essential to optimize the stimulation site selection near the existing faults to reduce risks of future seismic hazards near the East Shale Basin.


2021 ◽  
Vol 13 (17) ◽  
pp. 9652
Author(s):  
Navdeep Agrawal ◽  
Laxmi Gupta ◽  
Jagabandhu Dixit

The seismicity of the National Capital Region (NCR) of India increased significantly over the last decade. Communities in the NCR face significant exposure to damaging seismic events, and the seismic risk arises not only from the region’s proximity to the Himalayan mountains, but also from the socioeconomic vulnerabilities in its communities and the current capacities of different localities to respond to and recover from any unforeseen large seismic event. GIS-based spatial distribution of exposure to seismic hazards (SH) can help decision-makers and authorities identify locations with populations at high seismic risk, and to prepare risk-mitigation plans. Socioeconomic vulnerability (SeV) studies serve as a basis for quantifying qualitative measures. For this purpose, in the present study, the hazard of place (HoP) model is used to assess SeV to seismic hazards in the NCR. Social indicators like age, gender, literacy, family size, built environment, etc., comprising a total of 36 variables, are used to assess a socioeconomic vulnerability index (SeVI) based on factor and principal component (PCA) analyses. Based on PCA, 20 variables were retained and grouped into four factors: socioeconomic status, employment status, building typology, and family size. Ground-motion parameters, estimated from probabilistic seismic hazard assessment, are integrated with the socioeconomic vulnerability index to quantify exposure to seismic hazards. The spatial distributions in the produced socioeconomic-vulnerability index and seismic–hazard–exposure maps highlight the critical areas. The results reveal that areas of low literacy, high unemployment, and poor housing condition show moderate-to-high vulnerability. The south-eastern region of the study area is assessed as a high-risk zone by an integrated SeV–SH risk matrix. The results of this study emphasize the importance of the socioeconomic vulnerability component of disaster risk–reduction programs, from a holistic perspective, for the areas with high seismicity.


Sign in / Sign up

Export Citation Format

Share Document