How to Separate the Wheat from the Chaff: Improved Variable Selection for New Customer Acquisition

2017 ◽  
Vol 81 (2) ◽  
pp. 99-113 ◽  
Author(s):  
Sebastian Tillmanns ◽  
Frenkel Ter Hofstede ◽  
Manfred Krafft ◽  
Oliver Goetz

Steady customer losses create pressure for firms to acquire new accounts, a task that is both costly and risky. Lacking knowledge about their prospects, firms often use a large array of predictors obtained from list vendors, which in turn rapidly creates massive high-dimensional data problems. Selecting the appropriate variables and their functional relationships with acquisition probabilities is therefore a substantial challenge. This study proposes a Bayesian variable selection approach to optimally select targets for new customer acquisition. Data from an insurance company reveal that this approach outperforms nonselection methods and selection methods based on expert judgment as well as benchmarks based on principal component analysis and bootstrap aggregation of classification trees. Notably, the optimal results show that the Bayesian approach selects panel-based metrics as predictors, detects several nonlinear relationships, selects very large numbers of addresses, and generates profits. In a series of post hoc analyses, the authors consider prospects’ response behaviors and cross-selling potential and systematically vary the number of predictors and the estimated profit per response. The results reveal that more predictors and higher response rates do not necessarily lead to higher profits.

2019 ◽  
Author(s):  
Sierra Bainter ◽  
Thomas Granville McCauley ◽  
Tor D Wager ◽  
Elizabeth Reynolds Losin

In this paper we address the problem of selecting important predictors from some larger set of candidate predictors. Standard techniques are limited by lack of power and high false positive rates. A Bayesian variable selection approach used widely in biostatistics, stochastic search variable selection, can be used instead to combat these issues by accounting for uncertainty in the other predictors of the model. In this paper we present Bayesian variable selection to aid researchers facing this common scenario, along with an online application (https://ssvsforpsych.shinyapps.io/ssvsforpsych/) to perform the analysis and visualize the results. Using an application to predict pain ratings, we demonstrate how this approach quickly identifies reliable predictors, even when the set of possible predictors is larger than the sample size. This technique is widely applicable to research questions that may be relatively data-rich, but with limited information or theory to guide variable selection.


2019 ◽  
Vol 158 (5) ◽  
pp. 210
Author(s):  
Bo Ning ◽  
Alexander Wise ◽  
Jessi Cisewski-Kehe ◽  
Sarah Dodson-Robinson ◽  
Debra Fischer

2003 ◽  
Vol 19 (1) ◽  
pp. 90-97 ◽  
Author(s):  
K. E. Lee ◽  
N. Sha ◽  
E. R. Dougherty ◽  
M. Vannucci ◽  
B. K. Mallick

Biometrika ◽  
2020 ◽  
Author(s):  
J E Griffin ◽  
K G Łatuszyński ◽  
M F J Steel

Summary The availability of datasets with large numbers of variables is rapidly increasing. The effective application of Bayesian variable selection methods for regression with these datasets has proved difficult since available Markov chain Monte Carlo methods do not perform well in typical problem sizes of interest. We propose new adaptive Markov chain Monte Carlo algorithms to address this shortcoming. The adaptive design of these algorithms exploits the observation that in large-$p$, small-$n$ settings, the majority of the $p$ variables will be approximately uncorrelated a posteriori. The algorithms adaptively build suitable nonlocal proposals that result in moves with squared jumping distance significantly larger than standard methods. Their performance is studied empirically in high-dimensional problems and speed-ups of up to four orders of magnitude are observed.


Sign in / Sign up

Export Citation Format

Share Document