Complex Finsler structures on tensor products

2016 ◽  
Vol 16 (1) ◽  
Author(s):  
Adnène Ben Abdesselem ◽  
Ines Adouan

AbstractGiven two holomorphic vector bundles E

2016 ◽  
Vol 27 (10) ◽  
pp. 1650079 ◽  
Author(s):  
Laurent Manivel

We prove explicit formulas for Chern classes of tensor products of virtual vector bundles, whose coefficients are given by certain universal polynomials in the ranks of the two bundles.


1993 ◽  
Vol 114 (3) ◽  
pp. 443-451
Author(s):  
Al Vitter

Stable holomorphic vector bundles over complex projective space ℙnhave been studied from both the differential-geometric and the algebraic-geometric points of view.On the differential-geometric side, the stability ofE-→ ℙncan be characterized by the existence of a unique hermitian–Einstein metric onE, i.e. a metric whose curvature matrix has trace-free part orthogonal to the Fubini–Study Kähler form of ℙn(see [6], [7], and [13]). Very little is known about this metric in general and the only explicit examples are the metrics on the tangent bundle of ℙnand the nullcorrelation bundle (see [9] and [10]).


Author(s):  
Christian Okonek ◽  
Michael Schneider ◽  
Heinz Spindler

2006 ◽  
Vol 13 (1) ◽  
pp. 7-10
Author(s):  
Edoardo Ballico

Abstract Let 𝑋 be a holomorphically convex complex manifold and Exc(𝑋) ⊆ 𝑋 the union of all positive dimensional compact analytic subsets of 𝑋. We assume that Exc(𝑋) ≠ 𝑋 and 𝑋 is not a Stein manifold. Here we prove the existence of a holomorphic vector bundle 𝐸 on 𝑋 such that is not holomorphically trivial for every open neighborhood 𝑈 of Exc(𝑋) and every integer 𝑚 ≥ 0. Furthermore, we study the existence of holomorphic vector bundles on such a neighborhood 𝑈, which are not extendable across a 2-concave point of ∂(𝑈).


1971 ◽  
Vol 93 (2) ◽  
pp. 429 ◽  
Author(s):  
Charles M. Barton

Sign in / Sign up

Export Citation Format

Share Document