Prescribing the Scalar Curvature Problem on Three and Four Manifolds

2003 ◽  
Vol 3 (4) ◽  
Author(s):  
Hichem Chtioui

AbstractThis paper is devoted to the prescribed scalar curvature problem on 3 and 4- dimensional Riemannian manifolds. We give a new class of functionals which can be realized as scalar curvature. Our proof uses topological arguments and the tools of the theory of the critical points at infinity.

Author(s):  
Qihan He ◽  
Chunhua Wang ◽  
Da-Bin Wang

In this paper, we consider the following critical equation: [Formula: see text] where [Formula: see text], [Formula: see text] and [Formula: see text] are two nonnegative and bounded functions. Using a finite-dimensional reduction argument and local Pohozaev type of identities, we show that if [Formula: see text], [Formula: see text] has a stable critical point [Formula: see text] with [Formula: see text] and [Formula: see text], then the above equation has infinitely many positive solutions, where [Formula: see text] is the unique positive solution of [Formula: see text] with [Formula: see text]. Combining the results of [S. Peng, C. Wang and S. Wei, Constructing solutions for the prescribed scalar curvature problem via local Pohozaev identities, to appear in J. Differential Equations; S. Peng, C. Wang and S. Yan, Construction of solutions via local Pohozaev identities, J. Funct. Anal. 274 (2018) 2606–2633], it implies that the role of stable critical points of [Formula: see text] in constructing bump solutions is more important than that of [Formula: see text] and that [Formula: see text] can influence the sign of [Formula: see text], i.e. [Formula: see text] can be nonnegative, different from that in [S. Peng, C. Wang and S. Wei, Constructing solutions for the prescribed scalar curvature problem via local Pohozaev identities, to appear in J. Differential Equations]. The concentration points of the solutions locate near the stable critical points of [Formula: see text] which include the case of a saddle point.


2020 ◽  
Vol 31 (03) ◽  
pp. 2050023
Author(s):  
Najoua Gamara ◽  
Boutheina Hafassa ◽  
Akrem Makni

We give multiplicity results for the problem of prescribing the scalar curvature on Cauchy–Riemann spheres under [Formula: see text]-flatness condition. To find a lower bound for the number of solutions, we use Bahri’s methods based on the theory of critical points at infinity and a Poincaré–Hopf-type formula.


2019 ◽  
Vol 4 (1) ◽  
pp. 51-82 ◽  
Author(s):  
Martin Mayer

Abstract We illustrate an example of a generic, positive function K on a Riemannian manifold to be conformally prescribed as the scalar curvature, for which the corresponding Yamabe type L2-gradient flow exhibits non compact flow lines, while a slight modification of it is compact.


2002 ◽  
Vol 2 (2) ◽  
Author(s):  
Mohamed Ben Ayed ◽  
Khalil El Mehdi ◽  
Mohameden Ould Ahmedou

AbstractThis paper is devoted to the problem of prescribing the scalar curvature under zero boundary conditions. Using dynamical and topological methods involving the study of critical points at infinity of the associated variational problem, we prove some existence results on the standard half sphere.


2014 ◽  
Vol 14 (2) ◽  
Author(s):  
Mohammed Ali Al-Ghamdi ◽  
Hichem Chtioui ◽  
Khadijah Sharaf

AbstractUsing an algebraic topological method and the tools of the theory of the critical points at infinity, we provide a variety of classes of functions that can be realized as the mean curvature on the boundary of the the n-dimensional balls.


Geometry ◽  
2014 ◽  
Vol 2014 ◽  
pp. 1-9
Author(s):  
Ridha Yacoub

In this paper we deal with the scalar curvature problem under minimal boundary mean curvature condition on the standard 3-dimensional half-sphere. Using tools related to the theory of critical points at infinity, we give existence results under perturbative and nonperturbative hypothesis, and with the help of some “Morse inequalities at infinity”, we provide multiplicity results for our problem.


2014 ◽  
Vol 12 (12) ◽  
Author(s):  
Dina Abuzaid ◽  
Randa Ben Mahmoud ◽  
Hichem Chtioui ◽  
Afef Rigane

AbstractIn this paper, we consider the problem of the existence of conformal metrics with prescribed scalar curvature on the standard sphere S n, n ≥ 3. We give new existence and multiplicity results based on a new Euler-Hopf formula type. Our argument also has the advantage of extending well known results due to Y. Li [16].


2007 ◽  
Vol 131 (4) ◽  
pp. 361-374 ◽  
Author(s):  
Hichem Chtioui ◽  
Khalil El Mehdi ◽  
Najoua Gamara

Sign in / Sign up

Export Citation Format

Share Document