On a Minimization Problem Involving the Critical Sobolev Exponent

2007 ◽  
Vol 7 (4) ◽  
Author(s):  
Francesca Prinari ◽  
Nicola Visciglia

AbstractFollowing [3] we study the following minimization problem:in any dimension n ≥ 4 and under suitable assumptions on a(x). Mainly we assume that a(x) belongs to the Lorentz space LN ≡ {x ∈ Ω|a(x) < 0}has positive Lebesgue measure. Notice that this last condition is satisfied when the set N has a nontrivial interior part (in fact this is the typical assumption imposed in the literature on the set N).

Author(s):  
Rupert L. Frank ◽  
Tobias König ◽  
Hynek Kovařík

AbstractFor a bounded open set $$\Omega \subset {\mathbb {R}}^3$$ Ω ⊂ R 3 we consider the minimization problem $$\begin{aligned} S(a+\epsilon V) = \inf _{0\not \equiv u\in H^1_0(\Omega )} \frac{\int _\Omega (|\nabla u|^2+ (a+\epsilon V) |u|^2)\,dx}{(\int _\Omega u^6\,dx)^{1/3}} \end{aligned}$$ S ( a + ϵ V ) = inf 0 ≢ u ∈ H 0 1 ( Ω ) ∫ Ω ( | ∇ u | 2 + ( a + ϵ V ) | u | 2 ) d x ( ∫ Ω u 6 d x ) 1 / 3 involving the critical Sobolev exponent. The function a is assumed to be critical in the sense of Hebey and Vaugon. Under certain assumptions on a and V we compute the asymptotics of $$S(a+\epsilon V)-S$$ S ( a + ϵ V ) - S as $$\epsilon \rightarrow 0+$$ ϵ → 0 + , where S is the Sobolev constant. (Almost) minimizers concentrate at a point in the zero set of the Robin function corresponding to a and we determine the location of the concentration point within that set. We also show that our assumptions are almost necessary to have $$S(a+\epsilon V)<S$$ S ( a + ϵ V ) < S for all sufficiently small $$\epsilon >0$$ ϵ > 0 .


2002 ◽  
Vol 2 (4) ◽  
Author(s):  
Sarni Baraket

AbstractIn this paper, we construct positive weak solutions of a fourth order conformally invariant equation on S


2017 ◽  
Vol 17 (4) ◽  
pp. 641-659
Author(s):  
Zhenyu Guo ◽  
Kanishka Perera ◽  
Wenming Zou

AbstractWe consider the critical p-Laplacian system\left\{\begin{aligned} &\displaystyle{-}\Delta_{p}u-\frac{\lambda a}{p}\lvert u% \rvert^{a-2}u\lvert v\rvert^{b}=\mu_{1}\lvert u\rvert^{p^{\ast}-2}u+\frac{% \alpha\gamma}{p^{\ast}}\lvert u\rvert^{\alpha-2}u\lvert v\rvert^{\beta},&&% \displaystyle x\in\Omega,\\ &\displaystyle{-}\Delta_{p}v-\frac{\lambda b}{p}\lvert u\rvert^{a}\lvert v% \rvert^{b-2}v=\mu_{2}\lvert v\rvert^{p^{\ast}-2}v+\frac{\beta\gamma}{p^{\ast}}% \lvert u\rvert^{\alpha}\lvert v\rvert^{\beta-2}v,&&\displaystyle x\in\Omega,\\ &\displaystyle u,v\text{ in }D_{0}^{1,p}(\Omega),\end{aligned}\right.where {\Delta_{p}u:=\operatorname{div}(\lvert\nabla u\rvert^{p-2}\nabla u)} is the p-Laplacian operator defined onD^{1,p}(\mathbb{R}^{N}):=\bigl{\{}u\in L^{p^{\ast}}(\mathbb{R}^{N}):\lvert% \nabla u\rvert\in L^{p}(\mathbb{R}^{N})\bigr{\}},endowed with the norm {{\lVert u\rVert_{D^{1,p}}:=(\int_{\mathbb{R}^{N}}\lvert\nabla u\rvert^{p}\,dx% )^{\frac{1}{p}}}}, {N\geq 3}, {1<p<N}, {\lambda,\mu_{1},\mu_{2}\geq 0}, {\gamma\neq 0}, {a,b,\alpha,\beta>1} satisfy {a+b=p}, {\alpha+\beta=p^{\ast}:=\frac{Np}{N-p}}, the critical Sobolev exponent, Ω is {\mathbb{R}^{N}} or a bounded domain in {\mathbb{R}^{N}} and {D_{0}^{1,p}(\Omega)} is the closure of {C_{0}^{\infty}(\Omega)} in {D^{1,p}(\mathbb{R}^{N})}. Under suitable assumptions, we establish the existence and nonexistence of a positive least energy solution of this system. We also consider the existence and multiplicity of the nontrivial nonnegative solutions.


Sign in / Sign up

Export Citation Format

Share Document