semilinear heat equation
Recently Published Documents


TOTAL DOCUMENTS

252
(FIVE YEARS 52)

H-INDEX

24
(FIVE YEARS 3)

Author(s):  
Lijuan Wang ◽  
Can Zhang

In this paper, we first prove a uniform upper bound on costs of null controls for semilinear heat equations with globally Lipschitz nonlinearity on a sequence of increasing domains, where the controls are acted on an equidistributed set that spreads out in the whole Euclidean space R N . As an application, we then show the exact null-controllability for this semilinear heat equation in R N . The main novelty here is that the upper bound on costs of null controls for such kind of equations in large but bounded domains can be made uniformly with respect to the sizes of domains under consideration. The latter is crucial when one uses a suitable approximation argument to derive the global null-controllability for the semilinear heat equation in R N . This allows us to overcome the well-known problem of the lack of compactness embedding arising in the study of null-controllability for nonlinear PDEs in generally unbounded domains.


2021 ◽  
pp. 1-35
Author(s):  
Nakao Hayashi ◽  
Elena I. Kaikina ◽  
Pavel I. Naumkin ◽  
Takayoshi Ogawa

We study the nonlinear Neumann boundary value problem for semilinear heat equation ∂ t u − Δ u = λ | u | p , t > 0 , x ∈ R + n , u ( 0 , x ) = ε u 0 ( x ) , x ∈ R + n , − ∂ x u ( t , x ′ , 0 ) = γ | u | q ( t , x ′ , 0 ) , t > 0 , x ′ ∈ R n − 1 where p = 1 + 2 n , q = 1 + 1 n and ε > 0 is small enough. We investigate the life span of solutions for λ , γ > 0. Also we study the global in time existence and large time asymptotic behavior of solutions in the case of λ , γ < 0 and ∫ R + n u 0 ( x ) d x > 0.


2021 ◽  
Vol 349 (3) ◽  
pp. 519-527
Author(s):  
Rabil Ayazoglu (Mashiyev) ◽  
Ebubekir Akkoyunlu ◽  
Tuba Agirman Aydin

2021 ◽  
Vol 26 (6) ◽  
pp. 1106-1122
Author(s):  
Ionuţ Munteanu

The present paper is devoted to the problem of stabilization of the one-dimensional semilinear heat equation with nonlocal initial conditions. The control is with boundary actuation. It is linear, of finite-dimensional structure, given in an explicit form. It allows to write the corresponding solution of the closed-loop equation in a mild formulation via a kernel, then to apply a fixed point argument in a convenient space.


2021 ◽  
Vol 60 ◽  
pp. 103277
Author(s):  
I.P. de Jesus ◽  
A.M. Oliveira ◽  
M.R. Clark ◽  
P.P.A. Oliveira

Author(s):  
Gui-Chun Jiang ◽  
Ruo-Yi Wang ◽  
Yu-Xuan Wang ◽  
Gao-Feng Zheng

Author(s):  
Jerome Lemoine ◽  
Irene Marin-Gayte ◽  
Arnaud Munch

The null distributed controllability of the semilinear heat equation $\partial_t y-\Delta y + g(y)=f \,1_{\omega}$ assuming that $g\in C^1(\mathbb{R})$ satisfies the growth condition $\limsup_{r\to \infty} g(r)/(\vert r\vert \ln^{3/2}\vert r\vert)=0$ has been obtained by Fern\'andez-Cara and Zuazua in 2000. The proof based on a non constructive fixed point theorem makes use of precise estimates of the observability constant for a linearized wave equation. Assuming that $g^\prime$ is bounded and uniformly H\"older continuous on $\mathbb{R}$ with exponent $p\in (0,1]$, we design a constructive proof yielding an explicit sequence converging strongly to a controlled solution for the semilinear equation, at least with order $1+p$ after a finite number of iterations. The method is based on a least-squares approach and coincides with a globally convergent damped  Newton methods: it guarantees the convergence whatever be the initial element of the sequence. Numerical experiments in the one dimensional setting illustrate our analysis.


Sign in / Sign up

Export Citation Format

Share Document