scholarly journals Ground States for a Nonlinear Schrödinger System with Sublinear Coupling Terms

2016 ◽  
Vol 16 (2) ◽  
Author(s):  
Filipe Oliveira ◽  
Hugo Tavares

AbstractWe study the existence of ground states for the coupled Schrödinger system

2016 ◽  
Vol 2016 ◽  
pp. 1-19 ◽  
Author(s):  
Juan Carlos Muñoz Grajales

We show the existence of waveforms of finite-energy (vector solitons) for a coupled nonlinear Schrödinger system with inhomogeneous coefficients. Furthermore, some of these solutions are approximated using a Newton-type iteration, combined with a collocation-spectral strategy to discretize the corresponding soliton equations. Some numerical simulations concerned with analysis of a collision of two oncoming vector solitons of the system are also performed.


2010 ◽  
Vol 10 (1) ◽  
Author(s):  
Zhaoli Liu ◽  
Zhi-Qiang Wang

AbstractThis paper concerns existence and multiplicity of ground states and bound states of the time-independent Schrödinger systemwhere n = 2, 3, N ≥ 2, λand β


2021 ◽  
Vol 0 (0) ◽  
pp. 0
Author(s):  
Mohammad Ali Husaini ◽  
Chuangye Liu

<p style='text-indent:20px;'>In this paper, we study the following coupled nonlinear Schrödinger system of the form</p><p style='text-indent:20px;'><disp-formula> <label/> <tex-math id="FE1"> \begin{document}$ \left\{\begin{array}{l} -\Delta u_i-\kappa_iu_i = g_i(u_i)+\lambda\partial_iF(\vec{u}), \\ \vec{u} = (u_1,u_2,\cdots,u_m), u_i\in D_0^{1,2}(\Omega), \end{array}\right. $\end{document} </tex-math></disp-formula></p><p style='text-indent:20px;'>for <inline-formula><tex-math id="M1">\begin{document}$ m = 2,3 $\end{document}</tex-math></inline-formula>, where <inline-formula><tex-math id="M2">\begin{document}$ \Omega\subset \mathbb{R}^N $\end{document}</tex-math></inline-formula> is a bounded domain or <inline-formula><tex-math id="M3">\begin{document}$ \mathbb{R}^N $\end{document}</tex-math></inline-formula>, <inline-formula><tex-math id="M4">\begin{document}$ N\geq 3 $\end{document}</tex-math></inline-formula>, <inline-formula><tex-math id="M5">\begin{document}$ F(t_1,t_2\cdots,t_m)\in C^1(\mathbb{R}^m,\mathbb{R}) $\end{document}</tex-math></inline-formula>, <inline-formula><tex-math id="M6">\begin{document}$ \kappa_i\in\mathbb{R} $\end{document}</tex-math></inline-formula>, <inline-formula><tex-math id="M7">\begin{document}$ g_i\in C(\mathbb{R}) \ (i = 1,2,\cdots,m) $\end{document}</tex-math></inline-formula> and <inline-formula><tex-math id="M8">\begin{document}$ \lambda&gt;0 $\end{document}</tex-math></inline-formula> is large enough. In this work we mainly focus on the existence of fully nontrivial ground-state solutions and synchronized ground-state solutions under certain conditions.</p>


Sign in / Sign up

Export Citation Format

Share Document