small coupling
Recently Published Documents


TOTAL DOCUMENTS

72
(FIVE YEARS 17)

H-INDEX

13
(FIVE YEARS 2)

2021 ◽  
Vol 186 (1) ◽  
Author(s):  
Oliver Niggemann ◽  
Udo Seifert

AbstractWe investigate the thermodynamic uncertainty relation for the $$(1+1)$$ ( 1 + 1 ) dimensional Kardar–Parisi–Zhang (KPZ) equation on a finite spatial interval. In particular, we extend the results for small coupling strengths obtained previously to large values of the coupling parameter. It will be shown that, due to the scaling behavior of the KPZ equation, the thermodynamic uncertainty relation (TUR) product displays two distinct regimes which are separated by a critical value of an effective coupling parameter. The asymptotic behavior below and above the critical threshold is explored analytically. For small coupling, we determine this product perturbatively including the fourth order; for strong coupling we employ a dynamical renormalization group approach. Whereas the TUR product approaches a value of 5 in the weak coupling limit, it asymptotically displays a linear increase with the coupling parameter for strong couplings. The analytical results are then compared to direct numerical simulations of the KPZ equation showing convincing agreement.


2021 ◽  
Vol 2021 (6) ◽  
Author(s):  
Sasa Prelovsek ◽  
Sara Collins ◽  
Daniel Mohler ◽  
M. Padmanath ◽  
Stefano Piemonte

Abstract We present the first lattice investigation of coupled-channel $$ D\overline{D} $$ D D ¯ and $$ {D}_s{\overline{D}}_s $$ D s D ¯ s scattering in the JPC = 0++ and 2++ channels. The scattering matrix for partial waves l = 0, 2 and isospin zero is determined using multiple volumes and inertial frames via Lüscher’s formalism. Lattice QCD ensembles from the CLS consortium with mπ ≃ 280 MeV, a ≃ 0.09 fm and L/a = 24, 32 are utilized. The resulting scattering matrix suggests the existence of three charmonium-like states with JPC = 0++ in the energy region ranging from slightly below 2mD up to 4.13 GeV. We find a so far unobserved $$ D\overline{D} $$ D D ¯ bound state just below threshold and a $$ D\overline{D} $$ D D ¯ resonance likely related to χc0(3860), which is believed to be χc0(2P). In addition, there is an indication for a narrow 0++ resonance just below the $$ {D}_s{\overline{D}}_s $$ D s D ¯ s threshold with a large coupling to $$ {D}_s{\overline{D}}_s $$ D s D ¯ s and a very small coupling to $$ D\overline{D} $$ D D ¯ . This resonance is possibly related to the narrow X(3915)/χc0(3930) observed in experiment also just below $$ {D}_s{\overline{D}}_s $$ D s D ¯ s . The partial wave l = 2 features a resonance likely related to χc2(3930). We work with several assumptions, such as the omission of J/ψω, ηcη and three-particle channels. Only statistical uncertainties are quantified, while the extrapolations to the physical quark-masses and the continuum limit are challenges for the future.


2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Zhixian Zhong ◽  
Yijian Duan ◽  
Zhonghou Cai ◽  
Yanying Qi

This paper presents a twelve-pole heteropolar radial hybrid magnetic bearing (HRHMB) structure. Firstly, the structure and equivalent magnetic circuit (EMC) are designed. And the radial electromagnetic force characteristics are calculated by the EMC model. At the same time, the rationality of EMC model is verified by the finite-element method (FEM) of Magnet software. Then, the 2-D model of the twelve-pole HRHMB is established in Magnet software. The flux density variations of twelve-pole HRHMB and eight-pole HRHMB under different currents are compared by using the FEM. Finally, a method of Magnet-Simulink cosimulation is proposed to analyze the suspension characteristics of the twelve-pole HRHMB and compared with the eight-pole HRHMB. Thus, the effective combination of theoretical analysis, FEM analysis, and Magnet-Simulink cosimulation analysis is realized in the design of HRHMB. The results of Magnet-Simulink cosimulation show that the twelve-pole HRHMB has the advantages of low power consumption, small coupling, large construction dynamic stiffness, and better suspension characteristics than the eight-pole HRHMB.


2021 ◽  
Vol 2021 (3) ◽  
Author(s):  
Pengfei Zhang

Abstract In this work, we study a generalization of the coupled Sachdev-Ye-Kitaev (SYK) model with U(1) charge conservations. The model contains two copies of the complex SYK model at different chemical potentials, coupled by a direct hopping term. In the zero-temperature and small coupling limit with small averaged chemical potential, the ground state is an eternal wormhole connecting two sides, with a specific charge Q = 0, which is equivalent to a thermofield double state. We derive the conformal Green’s functions and determine corresponding IR parameters. At higher chemical potential, the system transit into the black hole phase. We further derive the Schwarzian effective action and study its quench dynamics. Finally, we compare numerical results with the analytical predictions.


Electronics ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 153
Author(s):  
Jianying Liang ◽  
Donghua Wu ◽  
Jin Yu

Capacitive power transfer (CPT) is a promising method to solve the problems caused by the traditional Pantograph-catenary contact power supply for railway applications. In contrast, the CPT system suffers a broken risk because of the small coupling capacitor. This paper has analyzed the CPT coupler’s voltage distributions for dynamic CPT systems when high power is required in real railway applications. The triangle relationship among the coupler voltages is derived. The circuit of the CPT system to accolated the coupler voltage is analyzed. Then, the compensation parameters are given. With the adopted LCLC-CL topology, the design process is presented by considering the coupler voltages. An experimental setup is conducted to validate the proposed design method. The experimental results show that the system can achieve 3 kW output power with 92.46% DC-DC efficiency and the voltage distribution aggress well with the designed values.


2020 ◽  
Vol 2020 (11) ◽  
Author(s):  
Jorge G. Russo

Abstract We study a new hermitian one-matrix model containing a logarithmic Penner’s type term and another term, which can be obtained as a limit from logarithmic terms. For small coupling, the potential has an absolute minimum at the origin, but beyond a certain value of the coupling the potential develops a double well. For a higher critical value of the coupling, the system undergoes a large N third-order phase transition.


2020 ◽  
Vol 80 (9) ◽  
Author(s):  
Víctor H. Cárdenas ◽  
Samuel Lepe

AbstractWe study the effect of an explicit interaction between two scalar fields components describing dark matter in the context of a recent proposal framework for interaction. We find that, even assuming a very small coupling, it is sufficient to explain the observational effects of a cosmological constant, and also overcome the problems of the $$\Lambda $$ Λ CDM model without assuming an exotic dark energy.


Electronics ◽  
2020 ◽  
Vol 9 (1) ◽  
pp. 110
Author(s):  
Woochan Lee ◽  
Dukju Ahn

A dual-impedance operation, where coil impedance is controlled by operating frequency selection, is proposed to maintain optimum reflected impedance across coupling variation. More specifically, this work focuses on how high coupling between coils presents excessively high reflected resistance to transmitter (Tx) inverters, degrading the efficiency and output power of the inverter. To overcome this problem, the proposed system is equipped with dual-impedance coil and selects high- or low-impedance coil based on the ability to operate both at 200 kHz and 6.78 MHz frequencies. The reactive impedances of 6.78 MHz coils are designed to be higher than that of 200 kHz coils. Since the reflected resistance is proportional to the coil impedances and coupling squared, at close distance with high coupling coefficient, 200 kHz coils with low coil impedances are activated to prevent an excessive rise in reflected resistance. On the other hand, at large distance spacing with low coupling coefficient, 6.78 MHz coils with high coil impedances are activated so that sufficient reflected resistance is obtained even under the small coupling. The proposed system’s advantages are the high efficiency and the elimination of bulky mechanical relay switches. Measured efficiencies are 88.6–50% across 10 coupling variations.


Sign in / Sign up

Export Citation Format

Share Document