Solutions for Fractional Schrödinger Equation Involving Critical Exponent via Local Pohozaev Identities

2020 ◽  
Vol 20 (1) ◽  
pp. 185-211 ◽  
Author(s):  
Yuxia Guo ◽  
Ting Liu ◽  
Jianjun Nie

AbstractWe consider the following fractional Schrödinger equation involving critical exponent:\left\{\begin{aligned} &\displaystyle(-\Delta)^{s}u+V(y)u=u^{2^{*}_{s}-1}&&% \displaystyle\text{in }\mathbb{R}^{N},\\ &\displaystyle u>0,&&\displaystyle y\in\mathbb{R}^{N},\end{aligned}\right.where {N\geq 3} and {2^{*}_{s}=\frac{2N}{N-2s}} is the critical Sobolev exponent. Under some suitable assumptions of the potential function {V(y)}, by using a finite-dimensional reduction method, combined with various local Pohazaev identities, we prove the existence of infinitely many solutions. Due to the nonlocality of the fractional Laplacian operator, we need to study the corresponding harmonic extension problem.

2018 ◽  
Vol 18 (1) ◽  
pp. 77-94
Author(s):  
Dan Li ◽  
Jiwei Zhang ◽  
Zhimin Zhang

AbstractA fast and accurate numerical scheme is presented for the computation of the time fractional Schrödinger equation on an unbounded domain. The main idea consists of two parts. First, we use artificial boundary methods to equivalently reformulate the unbounded problem into an initial-boundary value (IBV) problem. Second, we present two numerical schemes for the IBV problem: a direct scheme and a fast scheme. The direct scheme stands for the direct discretization of the Caputo fractional derivative by using the L1-formula. The fast scheme means that the sum-of-exponentials approximation is used to speed up the evaluation of the Caputo fractional derivative. The resulting fast algorithm significantly reduces the storage requirement and the overall computational cost compared to the direct scheme. Furthermore, the corresponding stability analysis and error estimates of two schemes are established, and numerical examples are given to verify the performance of our approach.


Sign in / Sign up

Export Citation Format

Share Document