A modular framework for optimal scheduling of industrial processes

2022 ◽  
Vol 70 (1) ◽  
pp. 31-37
Author(s):  
Axel Schild ◽  
Alexander Rose ◽  
Martin Grotjahn ◽  
Bennet Luck

Abstract This paper proposes an extended Petri net formalism as a suitable language for composing optimal scheduling problems of industrial production processes with real and binary decision variables. The proposed approach is modular and scalable, as the overall process dynamics and constraints can be collected by parsing of all atomic elements of the net graph. To conclude, we demonstrate the use of this framework for modeling the moulding sand preparation process of a real foundry plant.

Risk Analysis ◽  
2004 ◽  
Vol 24 (6) ◽  
pp. 1719-1735 ◽  
Author(s):  
David Vernez ◽  
Didier R. Buchs ◽  
Guillaume E. Pierrehumbert ◽  
Adel Besrour

Author(s):  
Michael Völker ◽  
Taiba Zahid ◽  
Thorsten Schmidt

The literature concerning resource constrained project scheduling problems (RCPSP) are mainly based on series or parallel schedule generation schemes with priority sequencing rules to resolve conflicts. Recently, these models have been extended for scheduling multi-modal RCPSP (MMRCPSP) where each activity has multiple possibilities to be performed thus providing decision managers a useful tool for manipulating resources and activities. Nonetheless, this further complicates the scheduling problem inflicted by increase of decision variables. Multiple heuristics have been proposed for this NP-hard problem. The main solution strategy adopted by such heuristics is a two loops decision strategy. Basically the problem is split between two parts where first part is conversion of MMRCPSP to RCPSP (mode fix) while second is finding feasible solution for a resource constrained project and is restricted to single project environments. This research aims on the development of scheduling heuristics, exploring the possibilities of scheduling MMRCPSP with parallel assignment of modes while sequencing the activities. The work addresses Multi-Mode Resource Constrained Multi-Project Scheduling Problem, (MMRCMPSP) by formulating a mathematical model that regards practical requirements of working systems. The algorithm is made intelligent and flexible in order to adopt and shift among various defined heuristic rules under different objectives to function as a decision support tool for managers.


Sign in / Sign up

Export Citation Format

Share Document