scholarly journals Using formal ontology for the representation of morphological properties of anatomical structures in endoscopic surgery

2020 ◽  
Vol 6 (1) ◽  
Author(s):  
Ralph Schäfermeier ◽  
Alexandr Uciteli ◽  
Stefan Kropf ◽  
Heinrich Herre

AbstractIn this paper we present results to the problem of an adequate and compact symbolic representation of morphological features of anatomical structures that serve as surgical landmarks for automated assistance in endoscopic surgery using the General Formal Ontology (GFO) as a formal framework. For this purpose, we employed a translation from this first-order logic representation to a more compact description logic based formalism with the associated benefits, such as the availability of decidable reasoning procedures, for the purpose of automated landmark recognition in a hybrid symbolic/subsymbolic AI approach.

Author(s):  
Carsten Lutz ◽  
Leif Sabellek

We consider ontology-mediated queries (OMQs) based on an EL ontology and an atomic query (AQ), provide an ultimately fine-grained analysis of data complexity and study rewritability into linear Datalog-aiming to capture linear recursion in SQL. Our main results are that every such OMQ is in AC0, NL-complete or PTime-complete, and that containment in NL coincides with rewritability into linear Datalog (whereas containment in AC0 coincides with rewritability into first-order logic). We establish natural characterizations of the three cases, show that deciding linear Datalog rewritability (as well as the mentioned complexities) is ExpTime-complete, give a way to construct linear Datalog rewritings when they exist, and prove that there is no constant bound on the arity of IDB relations in linear Datalog rewritings.


2011 ◽  
pp. 24-43
Author(s):  
J. Bruijn

This chapter introduces a number of formal logical languages which form the backbone of the Semantic Web. They are used for the representation of both ontologies and rules. The basis for all languages presented in this chapter is the classical first-order logic. Description logics is a family of languages which represent subsets of first-order logic. Expressive description logic languages form the basis for popular ontology languages on the Semantic Web. Logic programming is based on a subset of first-order logic, namely Horn logic, but uses a slightly different semantics and can be extended with non-monotonic negation. Many Semantic Web reasoners are based on logic programming principles and rule languages for the Semantic Web based on logic programming are an ongoing discussion. Frame Logic allows object-oriented style (frame-based) modeling in a logical language. RuleML is an XML-based syntax consisting of different sublanguages for the exchange of specifications in different logical languages over the Web.


Author(s):  
Paul Wild ◽  
Lutz Schröder

Modal description logics feature modalities that capture dependence of knowledge on parameters such as time, place, or the information state of agents. E.g., the logic S5-ALC combines the standard description logic ALC with an S5-modality that can be understood as an epistemic operator or as representing (undirected) change. This logic embeds into a corresponding modal first-order logic S5-FOL. We prove a modal characterization theorem for this embedding, in analogy to results by van Benthem and Rosen relating ALC to standard first-order logic: We show that S5-ALC with only local roles is, both over finite and over unrestricted models, precisely the bisimulation-invariant fragment of S5-FOL, thus giving an exact description of the expressive power of S5-ALC with only local roles.


Author(s):  
Paul Wild ◽  
Lutz Schröder ◽  
Dirk Pattinson ◽  
Barbara König

The fuzzy modality probably is interpreted over probabilistic type spaces by taking expected truth values. The arising probabilistic fuzzy description logic is invariant under probabilistic bisimilarity; more informatively, it is non-expansive wrt. a suitable notion of behavioural distance. In the present paper, we provide a characterization of the expressive power of this logic based on this observation: We prove a probabilistic analogue of the classical van Benthem theorem, which states that modal logic is precisely the bisimulation-invariant fragment of first-order logic. Specifically, we show that every formula in probabilistic fuzzy first-order logic that is non-expansive wrt. behavioural distance can be approximated by concepts of bounded rank in probabilistic fuzzy description logic.


Author(s):  
Jean Christoph Jung ◽  
Carsten Lutz ◽  
Hadrien Pulcini ◽  
Frank Wolter

Finding a logical formula that separates positive and negative examples given in the form of labeled data items is fundamental in applications such as concept learning, reverse engineering of database queries, and generating referring expressions. In this paper, we investigate the existence of a separating formula for incomplete data in the presence of an ontology. Both for the ontology language and the separation language, we concentrate on first-order logic and three important fragments thereof: the description logic ALCI, the guarded fragment, and the two-variable fragment. We consider several forms of separability that differ in the treatment of negative examples and in whether or not they admit the use of additional helper symbols to achieve separation. We characterize separability in a model-theoretic way, compare the separating power of the different languages, and determine the computational complexity of separability as a decision problem.


2013 ◽  
Vol 48 ◽  
pp. 885-922 ◽  
Author(s):  
E. Franconi ◽  
V. Kerhet ◽  
N. Ngo

We study a general framework for query rewriting in the presence of an arbitrary first-order logic ontology over a database signature. The framework supports deciding the existence of a safe-range first-order equivalent reformulation of a query in terms of the database signature, and if so, it provides an effective approach to construct the reformulation based on interpolation using standard theorem proving techniques (e.g., tableau). Since the reformulation is a safe-range formula, it is effectively executable as an SQL query. At the end, we present a non-trivial application of the framework with ontologies in the very expressive ALCHOIQ description logic, by providing effective means to compute safe-range first-order exact reformulations of queries.


2009 ◽  
Vol 19 (12) ◽  
pp. 3091-3099 ◽  
Author(s):  
Gui-Hong XU ◽  
Jian ZHANG

Author(s):  
Tim Button ◽  
Sean Walsh

Chapters 6-12 are driven by questions about the ability to pin down mathematical entities and to articulate mathematical concepts. This chapter is driven by similar questions about the ability to pin down the semantic frameworks of language. It transpires that there are not just non-standard models, but non-standard ways of doing model theory itself. In more detail: whilst we normally outline a two-valued semantics which makes sentences True or False in a model, the inference rules for first-order logic are compatible with a four-valued semantics; or a semantics with countably many values; or what-have-you. The appropriate level of generality here is that of a Boolean-valued model, which we introduce. And the plurality of possible semantic values gives rise to perhaps the ‘deepest’ level of indeterminacy questions: How can humans pin down the semantic framework for their languages? We consider three different ways for inferentialists to respond to this question.


Sign in / Sign up

Export Citation Format

Share Document