Sliding methods for the higher order fractional laplacians

2021 ◽  
Vol 24 (3) ◽  
pp. 923-949
Author(s):  
Leyun Wu

Abstract In this paper, we develop a sliding method for the higher order fractional Laplacians. We first obtain the key ingredients to obtain monotonicity of solutions, such as narrow region maximum principles in bounded or unbounded domains. Then we introduce a new idea of estimating the singular integrals defining the fractional Laplacian along a sequence of approximate maximum points and illustrate how this sliding method can be employed to obtain monotonicity of solutions. We believe that the narrow region maximum principles will become useful tools in analyzing higher order fractional equations.

Author(s):  
Wei Dai ◽  
Zhao Liu ◽  
Pengyan Wang

In this paper, we are concerned with the following Dirichlet problem for nonlinear equations involving the fractional [Formula: see text]-Laplacian: [Formula: see text] where [Formula: see text] is a bounded or an unbounded domain which is convex in [Formula: see text]-direction, and [Formula: see text] is the fractional [Formula: see text]-Laplacian operator defined by [Formula: see text] Under some mild assumptions on the nonlinearity [Formula: see text], we establish the monotonicity and symmetry of positive solutions to the nonlinear equations involving the fractional [Formula: see text]-Laplacian in both bounded and unbounded domains. Our results are extensions of Chen and Li [Maximum principles for the fractional p-Laplacian and symmetry of solutions, Adv. Math. 335 (2018) 735–758] and Cheng et al. [The maximum principles for fractional Laplacian equations and their applications, Commun. Contemp. Math. 19(6) (2017) 1750018].


2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Anup Biswas ◽  
Prasun Roychowdhury

AbstractWe study the generalized eigenvalue problem in {\mathbb{R}^{N}} for a general convex nonlinear elliptic operator which is locally elliptic and positively 1-homogeneous. Generalizing [H. Berestycki and L. Rossi, Generalizations and properties of the principal eigenvalue of elliptic operators in unbounded domains, Comm. Pure Appl. Math. 68 2015, 6, 1014–1065], we consider three different notions of generalized eigenvalues and compare them. We also discuss the maximum principles and uniqueness of principal eigenfunctions.


2010 ◽  
Vol 53 (2) ◽  
pp. 313-320 ◽  
Author(s):  
A. MARENO

AbstractWe deduce maximum principles for fourth-, sixth- and eighth-order elliptic equations by modifying an auxiliary function introduced by Payne (J. Analyse Math. 30 (1976), 421–433). Integral bounds on various gradients of the solutions of these equations are obtained.


2013 ◽  
Vol 61 (4) ◽  
pp. 2347-2352 ◽  
Author(s):  
N. V. Nair ◽  
A. J. Pray ◽  
J. Villa-Giron ◽  
B. Shanker ◽  
D. R. Wilton

2019 ◽  
Vol 21 (02) ◽  
pp. 1850005 ◽  
Author(s):  
Ran Zhuo ◽  
Yan Li

We study Navier problems involving the higher-order fractional Laplacians. We first obtain nonexistence of positive solutions, known as the Liouville-type theorems, in the upper half-space [Formula: see text] by studying an equivalent integral form of the fractional equation. Then we show symmetry for positive solutions on [Formula: see text] through a delicate iteration between lower-order differential/pseudo-differential equations split from the higher-order equation.


2018 ◽  
Vol 146 (11) ◽  
pp. 4823-4835 ◽  
Author(s):  
Nicola Abatangelo ◽  
Sven Jarohs ◽  
Alberto Saldaña

Author(s):  
Humberto Prado ◽  
Margarita Rivero ◽  
Juan J. Trujillo ◽  
M. Pilar Velasco

AbstractThe non local fractional Laplacian plays a relevant role when modeling the dynamics of many processes through complex media. From 1933 to 1949, within the framework of potential theory, the Hungarian mathematician Marcel Riesz discovered the well known Riesz potential operators, a generalization of the Riemann-Liouville fractional integral to dimension higher than one. The scope of this note is to highlight that in the above mentioned works, Riesz also gave the necessary tools to introduce several new definitions of the generalized coupled fractional Laplacian which can be applied to much wider domains of functions than those given in the literature, which are based in both the theory of fractional power of operators or in certain hyper-singular integrals. Moreover, we will introduce the corresponding fractional hyperbolic differential operator also called fractional Lorentzian Laplacian.


Sign in / Sign up

Export Citation Format

Share Document