Behavior of solutions of the Dirichlet problem for quasilinear divergent higher-order elliptic equations in unbounded domains

1988 ◽  
Vol 28 (6) ◽  
pp. 972-982 ◽  
Author(s):  
A. E. Shishkov
2008 ◽  
Vol 6 (1) ◽  
pp. 47-58 ◽  
Author(s):  
Paola Cavaliere ◽  
Maria Transirico

In this paper we prove a uniqueness and existence theorem for the Dirichlet problem inW2,pfor second order linear elliptic equations in unbounded domains of the plane. Here the leading coefficients are locally of classVMOand satisfy a suitable condition at infinity.


2017 ◽  
Vol 63 (3) ◽  
pp. 475-493 ◽  
Author(s):  
L M Kozhevnikova

For a certain class of second-order anisotropic elliptic equations with variable nonlinearity indices and L1 right-hand side we consider the Dirichlet problem in arbitrary unbounded domains. We prove the existence and uniqueness of entropy solutions in anisotropic Sobolev spaces with variable indices.


2013 ◽  
Vol 2013 ◽  
pp. 1-7
Author(s):  
Sara Monsurrò ◽  
Maria Transirico

We give an overview on some recent results concerning the study of the Dirichlet problem for second-order linear elliptic partial differential equations in divergence form and with discontinuous coefficients, in unbounded domains. The main theorem consists in an -a priori bound, . Some applications of this bound in the framework of non-variational problems, in a weighted and a non-weighted case, are also given.


Sign in / Sign up

Export Citation Format

Share Document