Seshadri constants on some Quot schemes
Abstract Let E be a vector bundle of rank n on ℙ 1 {\mathbb{P}^{1}} . Fix a positive integer d. Let 𝒬 ( E , d ) {\mathcal{Q}(E,d)} denote the Quot scheme of torsion quotients of E of degree d and let Gr ( E , d ) {\mathrm{Gr}(E,d)} denote the Grassmann bundle that parametrizes the d-dimensional quotients of the fibers of E. We compute Seshadri constants of ample line bundles on 𝒬 ( E , d ) {\mathcal{Q}(E,d)} and Gr ( E , d ) {\mathrm{Gr}(E,d)} .