scholarly journals Seshadri constants on some Quot schemes

2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Chandranandan Gangopadhyay ◽  
Krishna Hanumanthu ◽  
Ronnie Sebastian

Abstract Let E be a vector bundle of rank n on ℙ 1 {\mathbb{P}^{1}} . Fix a positive integer d. Let 𝒬 ⁢ ( E , d ) {\mathcal{Q}(E,d)} denote the Quot scheme of torsion quotients of E of degree d and let Gr ⁢ ( E , d ) {\mathrm{Gr}(E,d)} denote the Grassmann bundle that parametrizes the d-dimensional quotients of the fibers of E. We compute Seshadri constants of ample line bundles on 𝒬 ⁢ ( E , d ) {\mathcal{Q}(E,d)} and Gr ⁢ ( E , d ) {\mathrm{Gr}(E,d)} .

Author(s):  
Daewoong Cheong ◽  
Insong Choe ◽  
George H. Hitching

AbstractLet C be a complex projective smooth curve and W a symplectic vector bundle of rank 2n over C. The Lagrangian Quot scheme $$LQ_{-e}(W)$$ L Q - e ( W ) parameterizes subsheaves of rank n and degree $$-e$$ - e which are isotropic with respect to the symplectic form. We prove that $$LQ_{-e}(W)$$ L Q - e ( W ) is irreducible and generically smooth of the expected dimension for all large e, and that a generic element is saturated and stable.


2015 ◽  
Vol 2 (1) ◽  
Author(s):  
Svetlana Ermakova

AbstractIn this article we establish an analogue of the Barth-Van de Ven-Tyurin-Sato theorem.We prove that a finite rank vector bundle on a complete intersection of finite codimension in a linear ind-Grassmannian is isomorphic to a direct sum of line bundles.


Author(s):  
Victoria Hoskins ◽  
Simon Pepin Lehalleur

Abstract We define and study the motive of the moduli stack of vector bundles of fixed rank and degree over a smooth projective curve in Voevodsky’s category of motives. We prove that this motive can be written as a homotopy colimit of motives of smooth projective Quot schemes of torsion quotients of sums of line bundles on the curve. When working with rational coefficients, we prove that the motive of the stack of bundles lies in the localizing tensor subcategory generated by the motive of the curve, using Białynicki-Birula decompositions of these Quot schemes. We conjecture a formula for the motive of this stack, inspired by the work of Atiyah and Bott on the topology of the classifying space of the gauge group, and we prove this conjecture modulo a conjecture on the intersection theory of the Quot schemes.


2010 ◽  
Vol 135 (1-2) ◽  
pp. 215-228 ◽  
Author(s):  
Thomas Bauer ◽  
Tomasz Szemberg

1998 ◽  
Vol 09 (04) ◽  
pp. 513-522 ◽  
Author(s):  
MANFRED LEHN

It is the purpose of this short note to give a global description of the cotangent sheaf of Grothendieck's Quot-scheme in terms of a relative Ext-sheaf of the universal subsheaf and the universal quotient sheaf. As an application one gets a description of the cotangent sheaf of the moduli space of stable sheaves in terms of a relative Ext-sheaf involving only a universal family in case such a family exists.


2004 ◽  
Vol 11 (1) ◽  
pp. 43-48
Author(s):  
E. Ballico

Abstract Let V be a complex localizing Banach space with countable unconditional basis and E a rank r holomorphic vector bundle on P(V). Here we study the holomorphic embeddings of P(E) into products of projective spaces and the holomorphic line bundles on P(E). In particular we prove that if r ≥ 3, then H 1(P(E), L) = 0 for every holomorphic line bundle L on P(E).


2018 ◽  
Vol 2020 (10) ◽  
pp. 3130-3152
Author(s):  
Drew Johnson

Abstract We show how the “finite Quot scheme method” applied to Le Potier’s strange duality on del Pezzo surfaces leads to conjectures (valid for all smooth complex projective surfaces) relating two sets of universal power series on Hilbert schemes of points on surfaces: those for top Chern classes of tautological sheaves and those for Euler characteristics of line bundles. We have verified these predictions computationally for low order. We then give an analysis of these conjectures in small ranks. We also give a combinatorial proof of a formula predicted by our conjectures: the top Chern class of the tautological sheaf on $S^{[n]}$ associated to the structure sheaf of a point is equal to $(-1)^n$ times the nth Catalan number.


Sign in / Sign up

Export Citation Format

Share Document