Solution of the Ulam stability problem for Euler–Lagrange k-quintic mappings

2020 ◽  
Vol 27 (4) ◽  
pp. 585-592
Author(s):  
Syed Abdul Mohiuddine ◽  
John Michael Rassias ◽  
Abdullah Alotaibi

AbstractThe “oldest quartic” functional equationf(x+2y)+f(x-2y)=4[f(x+y)+f(x-y)]-6f(x)+24f(y)was introduced and solved by the second author of this paper (see J. M. Rassias, Solution of the Ulam stability problem for quartic mappings, Glas. Mat. Ser. III 34(54) 1999, 2, 243–252). Similarly, an interesting “quintic” functional equation was introduced and investigated by I. G. Cho, D. Kang and H. Koh, Stability problems of quintic mappings in quasi-β-normed spaces, J. Inequal. Appl. 2010 2010, Article ID 368981, in the following form:2f(2x+y)+2f(2x-y)+f(x+2y)+f(x-2y)=20[f(x+y)+f(x-y)]+90f(x).In this paper, we generalize this “Cho–Kang–Koh equation” by introducing pertinent Euler–Lagrange k-quintic functional equations, and investigate the “Ulam stability” of these new k-quintic functional mappings.

2017 ◽  
pp. 5054-5061
Author(s):  
Seong Sik Kim ◽  
Ga Ya Kim ◽  
Soo Hwan Kim

In this paper, we investigate the stability problem in the spirit of Hyers-Ulam, Rassias and G·avruta for the quadratic functional equation:f(2x + y) + f(2x ¡ y) = 2f(x + y) + 2f(x ¡ y) + 4f(x) ¡ 2f(y) in 2-Banach spaces. These results extend the generalized Hyers-Ulam stability results by thequadratic functional equation in normed spaces to 2-Banach spaces.


2014 ◽  
Vol 2014 ◽  
pp. 1-5 ◽  
Author(s):  
Abasalt Bodaghi ◽  
Sang Og Kim

The quadratic reciprocal functional equation is introduced. The Ulam stability problem for anϵ-quadratic reciprocal mappingf:X→Ybetween nonzero real numbers is solved. The Găvruţa stability for the quadratic reciprocal functional equations is established as well.


Author(s):  
A. Bodaghi ◽  
D. Kang ◽  
J.M. Rassias

AbstractIn this paper, we obtain the general solution of the following generalized mixed cubic and quartic functional equation f(x + kx) + f(x − ky) = k2{f(x + y) + f(x−y)}−2(k2−1)f(x)−2k2(k2−1)f(y)+ 1/4 k2(k2−1)f(2y), for fixed integers k with k ≠ 0,±1. The Hyers-Ulam stability problem for the mentioned functional equation is also proved.


2020 ◽  
Vol 53 (1) ◽  
pp. 174-192
Author(s):  
Anurak Thanyacharoen ◽  
Wutiphol Sintunavarat

AbstractIn this article, we prove the generalized Hyers-Ulam stability for the following additive-quartic functional equation:f(x+3y)+f(x-3y)+f(x+2y)+f(x-2y)+22f(x)+24f(y)=13{[}f(x+y)+f(x-y)]+12f(2y),where f maps from an additive group to a complete non-Archimedean normed space.


2017 ◽  
Vol 35 (1) ◽  
pp. 43 ◽  
Author(s):  
Abasalt Bodaghi

In the current work, we introduce a general form of a mixed additive and quartic functional equation. We determine all solutions of this functional equation. We also establish the generalized Hyers-Ulam stability of this new functional equation in quasi-$\beta$-normed spaces.


2013 ◽  
Vol 2013 ◽  
pp. 1-10 ◽  
Author(s):  
Abasalt Bodaghi ◽  
Sang Og Kim

We obtain the general solution of the generalized mixed additive and quadratic functional equationfx+my+fx−my=2fx−2m2fy+m2f2y,mis even;fx+y+fx−y−2m2−1fy+m2−1f2y,mis odd, for a positive integerm. We establish the Hyers-Ulam stability for these functional equations in non-Archimedean normed spaces whenmis an even positive integer orm=3.


2012 ◽  
Vol 2012 ◽  
pp. 1-45 ◽  
Author(s):  
Yeol Je Cho ◽  
Shin Min Kang ◽  
Reza Saadati

We prove the generalized Hyers-Ulam stability of the following additive-quadratic-cubic-quartic functional equationf(x+2y)+f(x−2y)=4f(x+y)+4f(x−y)−6f(x)+f(2y)+f(−2y)−4f(y)−4f(−y)in various complete random normed spaces.


Sign in / Sign up

Export Citation Format

Share Document