Solutions of a singular integro-differential equation related to the adhesive contact problems of elasticity theory

2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Nugzar Shavlakadze ◽  
Otar Jokhadze

Abstract Exact and approximate solutions of a some type singular integro-differential equation related to problems of adhesive interaction between elastic thin half-infinite or finite homogeneous patch and elastic plate are investigated. For the patch loaded with vertical forces, there holds a standard model in which vertical elastic displacements are assumed to be constant. Using the theory of analytic functions, integral transforms and orthogonal polynomials, the singular integro-differential equation is reduced to a different boundary value problem of the theory of analytic functions or to an infinite system of linear algebraic equations. Exact or approximate solutions of such problems and asymptotic estimates of normal contact stresses are obtained.

2017 ◽  
Vol 10 (07) ◽  
pp. 1750091 ◽  
Author(s):  
Şuayip Yüzbaşi

In this paper, we propose a collocation method to obtain the approximate solutions of a population model and the delay linear Volterra integro-differential equations. The method is based on the shifted Legendre polynomials. By using the required matrix operations and collocation points, the delay linear Fredholm integro-differential equation is transformed into a matrix equation. The matrix equation corresponds to a system of linear algebraic equations. Also, an error estimation method for method and improvement of solutions is presented by using the residual function. Applications of population model and general delay integro-differential equation are given. The obtained results are compared with the known results.


2021 ◽  
Vol 26 (1) ◽  
pp. 34-54
Author(s):  
Elmira A. Bakirova ◽  
Anar T. Assanova ◽  
Zhazira M. Kadirbayeva

The article proposes a numerically approximate method for solving a boundary value problem for an integro-differential equation with a parameter and considers its convergence, stability, and accuracy. The integro-differential equation with a parameter is approximated by a loaded differential equation with a parameter. A new general solution to the loaded differential equation with a parameter is introduced and its properties are described. The solvability of the boundary value problem for the loaded differential equation with a parameter is reduced to the solvability of a system of linear algebraic equations with respect to arbitrary vectors of the introduced general solution. The coefficients and the right-hand sides of the system are compiled through solutions of the Cauchy problems for ordinary differential equations. Algorithms are proposed for solving the boundary value problem for the loaded differential equation with a parameter. The relationship between the qualitative properties of the initial and approximate problems is established, and estimates of the differences between their solutions are given.


Author(s):  
Galina A. Rasolko ◽  
Sergei M. Sheshko

Two computational schemes for solving boundary value problems for a singular integro-differential equation, which describes the scattering of H-polarized electromagnetic waves by a screen with a curved boundary, are constructed.  This equation contains three types of integrals: a singular integral with the Cauchy kernel, integrals with a logarithmic singularity and with the Helder type kernel. The integrands, along with the solution function, contain its first derivative.  The proposed schemes for an approximate solution of the problem are based on the representation of the solution function in the form of a linear combination of the Chebyshev orthogonal polynomials and spectral relations that allows to obtain simple analytical expressions for the singular component of the equation. The expansion coefficients of the solution in terms of the Chebyshev polynomial basis are calculated by solving a system of linear algebraic equations. The results of numerical experiments show that on a grid of 20 –30 points, the error of the approximate solution reaches the minimum limit due to the error in representing real floating-point numbers.


Author(s):  
Hassan Hamad AL-Nasrawy ◽  
Abdul Khaleq O. Al-Jubory ◽  
Kasim Abbas Hussaina

In this paper, we study and modify an approximate method as well as a new collocation method, which is based on orthonormal Bernstein polynomials to find approximate solutions of mixed linear delay Fredholm integro-differential-difference equations under the mixed conditions. The main purpose of this paper is to study and develop some approximate methods to solve the mixed linear delay Fredholm integro-differential-difference equations. We employ a new algorithm to find approximate solution via perpendicular Bernstein polynomials on the interval [0,1], and we construct a new matrix of derivatives that will be used to find an approximate solution of matrix equation, that will reduce it to the systems of linear algebraic equations. We study the convergence approximate solutions to the exact solutions. Finally, two examples are given and their results are shown in figures to illustrate the efficiency and accuracy of this method. All the computations are implemented using Math14.


2021 ◽  
Vol 73 (1) ◽  
pp. 23-31
Author(s):  
N.B. Iskakova ◽  
◽  
G.S. Alihanova ◽  
А.K. Duisen ◽  
◽  
...  

In the present work for a limited period, we consider the system of integro-differential equations of containing the parameter. The kernel of the integral term is assumed to be degenerate, and as additional conditions for finding the values of the parameter and the solution of the given integro-differential equation, the values of the solution at the initial and final points of the given segment are given. The boundary value problem under consideration is investigated by D.S. Dzhumabaev's parametrization method. Based on the parameterization method, additional parameters are introduced. For a fixed value of the desired parameter, the solvability of the special Cauchy problem for a system of integro-differential equations with a degenerate kernel is established. Using the fundamental matrix of the differential part of the integro-differential equation and assuming the solvability of the special Cauchy problem, the original boundary value problem is reduced to a system of linear algebraic equations with respect to the introduced additional parameters. The existence of a solution to this system ensures the solvability of the problem under study. An algorithm for finding the solution of the initial problem based on the construction and solutions of a system of linear algebraic equations is proposed.


2018 ◽  
Vol 31 (1) ◽  
pp. 222
Author(s):  
Nabaa Najdi Hasan ◽  
Doaa Ahmed Hussien

    In this paper generalized spline method is used for solving linear system of fractional integro-differential equation approximately. The suggested method reduces the system to system of  linear algebraic equations. Different orders of fractional derivative for test example is given in this paper to show the accuracy and applicability of the presented method.


Analysis ◽  
2020 ◽  
Vol 40 (4) ◽  
pp. 175-191
Author(s):  
Anar T. Assanova ◽  
Elmira A. Bakirova ◽  
Gulmira K. Vassilina

AbstractA problem with parameter for an integro-differential equation is approximated by a problem with parameter for a loaded differential equation. The well-posedness of a problem with parameter for the integro-differential equation is established in the terms of the well-posedness of a problem with parameter for the loaded differential equation. A mutual relationship between the qualitative properties of original and approximate problems is obtained, and the estimates for differences between their solutions are set. A new general solution to the loaded differential equation with parameter is presented, and its properties are described. The problem with parameter for the loaded differential equation is reduced to a system of linear algebraic equations with respect to the arbitrary vectors of a general solution introduced. The system’s coefficients and right-hand sides are computed by solving the Cauchy problems for ordinary differential equations.


Axioms ◽  
2020 ◽  
Vol 9 (4) ◽  
pp. 121
Author(s):  
Tursun K. Yuldashev ◽  
Erkinjon T. Karimov

The questions of the one-value solvability of an inverse boundary value problem for a mixed type integro-differential equation with Caputo operators of different fractional orders and spectral parameters are considered. The mixed type integro-differential equation with respect to the main unknown function is an inhomogeneous partial integro-differential equation of fractional order in both positive and negative parts of the multidimensional rectangular domain under consideration. This mixed type of equation, with respect to redefinition functions, is a nonlinear Fredholm type integral equation. The fractional Caputo operators’ orders are smaller in the positive part of the domain than the orders of Caputo operators in the negative part of the domain under consideration. Using the method of Fourier series, two systems of countable systems of ordinary fractional integro-differential equations with degenerate kernels and different orders of integro-differentation are obtained. Furthermore, a method of degenerate kernels is used. In order to determine arbitrary integration constants, a linear system of functional algebraic equations is obtained. From the solvability condition of this system are calculated the regular and irregular values of the spectral parameters. The solution of the inverse problem under consideration is obtained in the form of Fourier series. The unique solvability of the problem for regular values of spectral parameters is proved. During the proof of the convergence of the Fourier series, certain properties of the Mittag–Leffler function of two variables, the Cauchy–Schwarz inequality and Bessel inequality, are used. We also studied the continuous dependence of the solution of the problem on small parameters for regular values of spectral parameters. The existence and uniqueness of redefined functions have been justified by solving the systems of two countable systems of nonlinear integral equations. The results are formulated as a theorem.


1963 ◽  
Vol 85 (3) ◽  
pp. 203-207 ◽  
Author(s):  
Fazil Erdogan

Integral transforms are used in the application of the weighted residual methods to the solution of problems in heat conduction. The procedure followed consists in reducing the given partial differential equation to an ordinary differential equation by successive applications of appropriate integral transforms, and finding its solution by using the weighted-residual methods. The undetermined coefficients contained in this solution are functions of transform variables. By inverting these functions the coefficients are obtained as functions of the actual variables.


Sign in / Sign up

Export Citation Format

Share Document