scholarly journals Badora's Equation on Non-Abelian Locally Compact Groups

2004 ◽  
Vol 11 (3) ◽  
pp. 449-466
Author(s):  
E. Elqorachi ◽  
M. Akkouchi ◽  
A. Bakali ◽  
B. Bouikhalene

Abstract This paper is mainly concerned with the following functional equation where 𝐺 is a locally compact group, 𝐾 a compact subgroup of its morphisms, and μ is a generalized Gelfand measure. It is shown that continuous and bounded solutions of this equation can be expressed in terms of μ-spherical functions. This extends the previous results obtained by Badora (Aequationes Math. 43: 72–89, 1992) on locally compact abelian groups. In the case where 𝐺 is a connected Lie group, we characterize solutions of the equation in question as joint eigenfunctions of certain operators associated to the left invariant differential operators.

2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Yanga Bavuma ◽  
Francesco G. Russo

Abstract We show that locally compact abelian p-groups can be embedded in the first Hawaiian group on a compact path connected subspace of the Euclidean space of dimension four. This result gives a new geometric interpretation for the classification of locally compact abelian groups which are rich in commuting closed subgroups. It is then possible to introduce the idea of an algebraic topology for topologically modular locally compact groups via the geometry of the Hawaiian earring. Among other things, we find applications for locally compact groups which are just noncompact.


1977 ◽  
Vol 17 (3) ◽  
pp. 401-417 ◽  
Author(s):  
Karl Heinrich Hofmann ◽  
Sidney A. Morris

In the category of locally compact groups not all families of groups have a product. Precisely which families do have a product and a description of the product is a corollary of the main theorem proved here. In the category of locally compact abelian groups a family {Gj; j ∈ J} has a product if and only if all but a finite number of the Gj are of the form Kj × Dj, where Kj is a compact group and Dj is a discrete torsion free group. Dualizing identifies the families having coproducts in the category of locally compact abelian groups and so answers a question of Z. Semadeni.


Author(s):  
Prasadini Mahapatra ◽  
Divya Singh

Scaling and generalized scaling sets determine wavelet sets and hence wavelets. In real case, wavelet sets were proved to be an important tool for the construction of MRA as well as non-MRA wavelets. However, any result related to scaling/generalized scaling sets is not available in case of locally compact abelian groups. This paper gives a characterization of scaling sets and its generalized version along with relevant examples in dual Cantor dyadic group [Formula: see text]. These results can further be generalized to arbitrary locally compact abelian groups.


Author(s):  
Edwin Hewitt ◽  
Herbert S. Zuckerman

Introduction. A famous construction of Wiener and Wintner ((13)), later refined by Salem ((11)) and extended by Schaeffer ((12)) and Ivašev-Musatov ((8)), produces a non-negative, singular, continuous measure μ on [ − π,π[ such thatfor every ∈ > 0. It is plain that the convolution μ * μ is absolutely continuous and in fact has Lebesgue–Radon–Nikodým derivative f such that For general locally compact Abelian groups, no exact analogue of (1 · 1) seems possible, as the character group may admit no natural order. However, it makes good sense to ask if μ* μ is absolutely continuous and has pth power integrable derivative. We will construct continuous singular measures μ on all non-discrete locally compact Abelian groups G such that μ * μ is a absolutely continuous and for which the Lebesgue–Radon–Nikodým derivative of μ * μ is in, for all real p > 1.


Sign in / Sign up

Export Citation Format

Share Document