Experimental and Artificial Neural Network Modeling of a Upflow Anaerobic Contactor (UAC) for Biogas Production from Vinasse

2016 ◽  
Vol 14 (6) ◽  
pp. 1241-1254 ◽  
Author(s):  
Ousman R. Dibaba ◽  
Sandip K. Lahiri ◽  
Stephan T’Jonck ◽  
Abhishek Dutta

Abstract A pilot scale Upflow Anaerobic Contactor (UAC), based on upflow sludge blanket principle, was designed to treat vinasse waste obtained from beet molasses fermentation. An assessment of the anaerobic digestion of vinasse was carried out for the production of biogas as a source of energy. Average Organic loading rate (OLR) was around 7.5 gCOD/m3/day in steady state, increasing upto 8.1 gCOD/m3/day. The anaerobic digestion was conducted at mesophilic (30–37 °C) temperature and a stable operating condition was achieved after 81 days with average production of 65 % methane which corresponded to a maximum biogas production of 85 l/day. The optimal performance of UAC was obtained at 87 % COD removal, which corresponded to a hydraulic retention time of 16.67 days. The biogas production increased gradually with OLR, corresponding to a maximum 6.54 gCOD/m3/day (7.4 % increase from initial target). A coupled Artificial Neural Network-Differential Evolution (ANN-DE) methodology was formulated to predict chemical oxygen demand (COD), total suspended solids (TSS) and volatile fatty acids (VFA) of the effluent along with the biogas production. The method incorporated a DE approach for the efficient tuning of ANN meta-parameters such as number of nodes in hidden layer, input and output activation function and learning rate. The model prediction indicated that it can learn the nonlinear complex relationship between the parameters and able to predict the output of the contactor with reasonable accuracy. The utilization of the coupled ANN-DE model provided significant improvement to the study and helps to study the parametric effect of influential parameters on the reactor output.

Author(s):  
Rayany Magali da Rocha Santana ◽  
Thalita Cristhina de Lima Moura ◽  
Graziele Elisandra do Nascimento ◽  
Lívia Vieira Carlini Charamba ◽  
Marta Maria Menezes Bezerra Duarte ◽  
...  

In recent years, heterogeneous photocatalysis using semiconductors has proved to be efficient for the treatment of wastewater containing organic pollutants, such as drugs. Among some photocatalysts, titanium dioxide (TiO2) has been studied and applied for this purpose. Therefore, this work investigated the photocatalytic degradation of the antipsychotic clozapine under ultraviolet irradiation, using suspended and supported TiO2 in polystyrene material. Some experimental parameters were evaluated through a factorial design 23; a higher degradation rate of the compound was verified using 0.15 g of the immobilized catalyst, [H2O2] of 340 mg L-1 and pH 9, after 6 h of treatment. It was possible to obtain degradations above 93.48% and a two-stage model was proposed to describe the reaction kinetics. An artificial neural network was used to model the photocatalytic process and to determine the importance of the operational variables. It was also established that the use of this treatment resulted in 78.30% removal of chemical oxygen demand (COD) under optimized conditions. In addition, the stability of TiO2 support after five consecutive cycles was verified from reuse tests. However, by means of toxicological tests with Escherichia coli and Salmonella enteritidis, it was observed that the products generated by the reaction were more toxic than the original compound.


Sign in / Sign up

Export Citation Format

Share Document