The Combined Laplace-Variational Iteration Method for Partial Differential Equations

Author(s):  
M. Matinfar ◽  
M. Saeidy ◽  
M. Ghasemi

AbstractIn this paper, the Laplace transform Variational Iteration Method (LVIM) is employed to obtain approximate analytical solutions of the linear and nonlinear partial differential equations. This method is a combined form of the Laplace transform method and the Variational Iteration Method. The proposed scheme, finds the solutions without any discretization or restrictive assumptions and is free from round-off errors and therefore, reduces the numerical computations to a great extent. Some illustrative examples are presented and the numerical results show that the solutions of the LVIM are in good agreement with the exact solution.

Open Physics ◽  
2016 ◽  
Vol 14 (1) ◽  
pp. 328-336 ◽  
Author(s):  
Bo Tang ◽  
Yingzhe Fan ◽  
Jianping Zhao ◽  
Xuemin Wang

AbstractIn this paper, based on Jumarie’s modified Riemann-Liouville derivative, we apply the fractional variational iteration method using He’s polynomials to obtain solitary and compacton solutions of fractional KdV-like equations. The results show that the proposed method provides a very effective and reliable tool for solving fractional KdV-like equations, and the method can also be extended to many other fractional partial differential equations.


2016 ◽  
Vol 5 (1) ◽  
pp. 86
Author(s):  
Naser Al-Qutaifi

<p>The idea of replacing the first derivative in time by a fractional derivative of order , where , leads to a fractional generalization of any partial differential equations of integer order. In this paper, we obtain a relationship between the solution of the integer order equation and the solution of its fractional extension by using the Laplace transform method.</p>


2014 ◽  
Vol 2014 ◽  
pp. 1-11
Author(s):  
Asma Ali Elbeleze ◽  
Adem Kılıçman ◽  
Bachok M. Taib

We are concerned here with singular partial differential equations of fractional order (FSPDEs). The variational iteration method (VIM) is applied to obtain approximate solutions of this type of equations. Convergence analysis of the VIM is discussed. This analysis is used to estimate the maximum absolute truncated error of the series solution. A comparison between the results of VIM solutions and exact solution is given. The fractional derivatives are described in Caputo sense.


2013 ◽  
Vol 2013 ◽  
pp. 1-11 ◽  
Author(s):  
Fukang Yin ◽  
Junqiang Song ◽  
Xiaoqun Cao ◽  
Fengshun Lu

This paper develops a modified variational iteration method coupled with the Legendre wavelets, which can be used for the efficient numerical solution of nonlinear partial differential equations (PDEs). The approximate solutions of PDEs are calculated in the form of a series whose components are computed by applying a recursive relation. Block pulse functions are used to calculate the Legendre wavelets coefficient matrices of the nonlinear terms. The main advantage of the new method is that it can avoid solving the nonlinear algebraic system and symbolic computation. Furthermore, the developed vector-matrix form makes it computationally efficient. The results show that the proposed method is very effective and easy to implement.


Sign in / Sign up

Export Citation Format

Share Document