Effects of the Combination of Halothane and Serotonin Uptake Blockers on Synaptic Transmission in the Rat Dentate Gyrus in Vitro

Author(s):  
Henry P. Frizelle ◽  
Denis C. Moriarty ◽  
John J. O'Connor
2010 ◽  
Vol 103 (6) ◽  
pp. 3320-3329 ◽  
Author(s):  
Michael J. Eckert ◽  
David K. Bilkey ◽  
Wickliffe C. Abraham

Exposure to an enriched environment can improve cognitive functioning in normal animals as well as in animal models of neurological disease and impairment. However, the physiological processes that mediate these changes are poorly understood. Previously we and others have found changes in hippocampal synaptic transmission and plasticity after 2–4 wk of enrichment although others have not observed effects. To determine whether long-term enrichment produces more robust changes, we housed rats continuously in an enriched environment for a minimum of 3 mo and then tested for effects on hippocampal physiology in vitro and in vivo. Enriched housing improved spatial learning compared with social and isolated housing, but surprisingly this was not accompanied by changes in basal synaptic transmission in either CA1 or the dentate gyrus as measured either in vitro or in vivo. This lack of change may reflect the operation of homeostatic mechanisms that keep global synaptic weights within a narrow range. In tests of synaptic plasticity, the induction of long-term potentiation was not changed in either CA1 or the dentate gyrus. However, in CA1 of enriched rats, there was less long-term depression in stratum radiatum, less depotentiation in stratum oriens, and altered paired-pulse inhibition of population spikes evoked in stratum oriens. These effects suggest that there are altered synaptic and network dynamics in hippocampal CA1 that contribute to the enrichment-related cognitive improvement.


1974 ◽  
Vol 32 (02/03) ◽  
pp. 405-416 ◽  
Author(s):  
M. R Hardeman ◽  
Carina J L. Heynens

SummaryStorage experiments were performed at 4°, 25° and 37° C with platelet-rich plasma under sterile conditions. In some experiments also the effect of storing platelets at 4° C in whole blood was investigated.Before, during and after three days of storage, the platelets were tested at 37° C for their serotonin uptake and response to hypotonic shock. In addition some glycolytic intermediates were determined.A fair correlation was noticed between the serotonin uptake and hypotonic shock experiments. Both parameters were best maintained at 25° C. Also platelet counting, performed after the storage period, indicated 25° C as the best storage temperature. Determination of glycolytic intermediates did not justify any conclusion regarding the optimal storage temperature. Of the various anticoagulants studied, ACD and heparin gave the best results as to the serotonin uptake and hypotonic shock response, either with fresh or stored platelets. The use of EDTA resulted in the lowest activity, especially after storage.The results of these storage experiments in vitro, correspond well with those in vivo reported in the literature.


1999 ◽  
Vol 82 (5) ◽  
pp. 2221-2234 ◽  
Author(s):  
Stephanie A. White ◽  
Frederick S. Livingston ◽  
Richard Mooney

Androgens potently regulate the development of learned vocalizations of songbirds. We sought to determine whether one action of androgens is to functionally modulate the development of synaptic transmission in two brain nuclei, the lateral part of the magnocellular nucleus of the anterior neostriatum (LMAN) and the robust nucleus of the archistriatum (RA), that are critical for song learning and production. We focused on N-methyl-d-aspartate–excitatory postsynaptic currents (NMDA-EPSCs), because NMDA receptor activity in LMAN is crucial to song learning, and because the LMAN synapses onto RA neurons are almost entirely mediated by NMDA receptors. Whole cell recordings from in vitro brain slice preparations revealed that the time course of NMDA-EPSCs was developmentally regulated in RA, as had been shown previously for LMAN. Specifically, in both nuclei, NMDA-EPSCs become faster over development. We found that this developmental transition can be modulated by androgens, because testosterone treatment of young animals caused NMDA-EPSCs in LMAN and RA to become prematurely fast. These androgen-induced effects were limited to fledgling and juvenile periods and were spatially restricted, in that androgens did not accelerate developmental changes in NMDA-EPSCs recorded in a nonsong area, the Wulst. To determine whether androgens had additional effects on LMAN or RA neurons, we examined several other physiological and morphological parameters. In LMAN, testosterone affected α-amino-3-hydroxy-5-methyl-4-isoxazoleproprianate–EPSC (AMPA-EPSC) decay times and the ratio of peak synaptic glutamate to AMPA currents, as well as dendritic length and spine density but did not alter soma size or dendritic complexity. In contrast, testosterone did not affect any of these parameters in RA, which demonstrates that exogenous androgens can have selective actions on different song system neurons. These data are the first evidence for any effect of sex steroids on synaptic transmission within the song system. Our results support the idea that endogenous androgens limit sensitive periods for song learning by functionally altering synaptic transmission in song nuclei.


Sign in / Sign up

Export Citation Format

Share Document