Almost congruence extension property for subgroups of free groups
Keyword(s):
AbstractLetHbe a subgroup ofFand{\langle\kern-1.422638pt\langle H\rangle\kern-1.422638pt\rangle_{F}}the normal closure ofHinF. We say thatHhas the Almost Congruence Extension Property (ACEP) inFif there is a finite set of nontrivial elements{\digamma\subset H}such that for any normal subgroupNofHone has{H\cap\langle\kern-1.422638pt\langle N\rangle\kern-1.422638pt\rangle_{F}=N}whenever{N\cap\digamma=\emptyset}. In this paper, we provide a sufficient condition for a subgroup of a free group to not possess ACEP. It also shows that any finitely generated subgroup of a free group satisfies some generalization of ACEP.
1988 ◽
Vol 40
(5)
◽
pp. 1144-1155
◽
2006 ◽
Vol 16
(06)
◽
pp. 1031-1045
◽
Keyword(s):
1971 ◽
Vol 5
(1)
◽
pp. 87-94
◽
Keyword(s):
2012 ◽
Vol 22
(04)
◽
pp. 1250030
Keyword(s):
1999 ◽
Vol 09
(06)
◽
pp. 687-692
◽
2012 ◽
Vol 22
(02)
◽
pp. 1250008
◽
Keyword(s):
1977 ◽
Vol 29
(3)
◽
pp. 541-551
◽
2010 ◽
Vol 20
(03)
◽
pp. 343-355
◽
Keyword(s):
2001 ◽
Vol 63
(3)
◽
pp. 607-622
◽
Keyword(s):