scholarly journals COMPRESSED WORDS AND AUTOMORPHISMS IN FULLY RESIDUALLY FREE GROUPS

2010 ◽  
Vol 20 (03) ◽  
pp. 343-355 ◽  
Author(s):  
JEREMY MACDONALD

We show that the compressed word problem in a finitely generated fully residually free group ([Formula: see text]-group) is decidable in polynomial time, and use this result to show that the word problem in the automorphism group of an [Formula: see text]-group is decidable in polynomial time.


2018 ◽  
Vol 10 (2) ◽  
pp. 63-82
Author(s):  
Pedro V. Silva ◽  
Alexander Zakharov

AbstractWe prove that it is decidable whether or not a finitely generated submonoid of a virtually free group is graded, introduce a new geometric characterization of graded submonoids in virtually free groups as quasi-geodesic submonoids, and show that their word problem is rational (as a relation). We also solve the isomorphism problem for this class of monoids, generalizing earlier results for submonoids of free monoids. We also prove that the classes of graded monoids, regular monoids and Kleene monoids coincide for submonoids of free groups.



1988 ◽  
Vol 40 (5) ◽  
pp. 1144-1155 ◽  
Author(s):  
J. McCool

Let An be the automorphism group of the free group Fn of rank n, and let Kn be the normal subgroup of An consisting of those elements which induce the identity automorphism in the commutator quotient group . The group Kn has been called the group of IA automorphisms of Fn (see e.g. [1]). It was shown by Magnus [7] using earlier work of Nielsen [11] that Kn is finitely generated, with generating set the automorphismsandwhere x1, x2, …, xn, is a chosen basis of Fn.



2006 ◽  
Vol 16 (06) ◽  
pp. 1031-1045 ◽  
Author(s):  
NICHOLAS W. M. TOUIKAN

Stalling's folding process is a key algorithm for solving algorithmic problems for finitely generated subgroups of free groups. Given a subgroup H = 〈J1,…,Jm〉 of a finitely generated nonabelian free group F = F(x1,…,xn) the folding porcess enables one, for example, to solve the membership problem or compute the index [F : H]. We show that for a fixed free group F and an arbitrary finitely generated subgroup H (as given above) we can perform the Stallings' folding process in time O(N log *(N)), where N is the sum of the word lengths of the given generators of H.



1971 ◽  
Vol 5 (1) ◽  
pp. 87-94 ◽  
Author(s):  
Gilbert Baumslag

We establish the result that a finitely generated cyclic extension of a free group is residually finite. This is done, in part, by making use of the fact that a finitely generated module over a principal ideal domain is a direct sum of cyclic modules.



2012 ◽  
Vol 22 (04) ◽  
pp. 1250030
Author(s):  
LUCAS SABALKA ◽  
DMYTRO SAVCHUK

Let G be a finitely generated free, free abelian of arbitrary exponent, free nilpotent, or free solvable group, or a free group in the variety AmAn, and let A = {a1,…, ar} be a basis for G. We prove that, in most cases, if S is a subset of a basis for G which may be expressed as a word in A without using elements from {al+1,…, ar} for some l < r, then S is a subset of a basis for the relatively free group on {a1,…, al}.



1999 ◽  
Vol 09 (06) ◽  
pp. 687-692 ◽  
Author(s):  
GILBERT BAUMSLAG ◽  
ALEXEI MYASNIKOV ◽  
VLADIMIR REMESLENNIKOV

We prove here that there is an algorithm whereby one can decide whether or not any finitely generated subgroup of a finitely generated free group is malnormal.



2007 ◽  
Vol 17 (08) ◽  
pp. 1611-1634 ◽  
Author(s):  
ABDÓ ROIG ◽  
ENRIC VENTURA ◽  
PASCAL WEIL

The Whitehead minimization problem consists in finding a minimum size element in the automorphic orbit of a word, a cyclic word or a finitely generated subgroup in a finite rank free group. We give the first fully polynomial algorithm to solve this problem, that is, an algorithm that is polynomial both in the length of the input word and in the rank of the free group. Earlier algorithms had an exponential dependency in the rank of the free group. It follows that the primitivity problem — to decide whether a word is an element of some basis of the free group — and the free factor problem can also be solved in polynomial time.



1977 ◽  
Vol 29 (3) ◽  
pp. 541-551 ◽  
Author(s):  
Robert Gilman

Let G and F be groups. A G-defining subgroup of F is a normal subgroup N of F such that F/N is isomorphic to G. The automorphism group Aut (F) acts on the set of G-defining subgroups of F. If G is finite and F is finitely generated, one obtains a finite permutation representation of Out (F), the outer automorphism group of F. We study these representations in the case that F is a free group.



2001 ◽  
Vol 63 (3) ◽  
pp. 607-622 ◽  
Author(s):  
ATHANASSIOS I. PAPISTAS

For positive integers n and c, with n [ges ] 2, let Gn, c be a relatively free group of finite rank n in the variety N2A ∧ AN2 ∧ Nc. It is shown that the subgroup of the automorphism group Aut(Gn, c) of Gn, c generated by the tame automorphisms and an explicitly described finite set of IA-automorphisms of Gn, c has finite index in Aut(Gn, c). Furthermore, it is proved that there are no non-trivial elements of Gn, c fixed by every tame automorphism of Gn, c.



2010 ◽  
Vol 20 (04) ◽  
pp. 561-590 ◽  
Author(s):  
PEDRO V. SILVA ◽  
PASCAL WEIL

We show that the following problems are decidable in a rank 2 free group F2: Does a given finitely generated subgroup H contain primitive elements? And does H meet the orbit of a given word u under the action of G, the group of automorphisms of F2? Moreover, decidability subsists if we allow H to be a rational subset of F2, or alternatively if we restrict G to be a rational subset of the set of invertible substitutions (a.k.a. positive automorphisms). In higher rank, the following weaker problem is decidable: given a finitely generated subgroup H, a word u and an integer k, does H contain the image of u by some k-almost bounded automorphism? An automorphism is k-almost bounded if at most one of the letters has an image of length greater than k.



Sign in / Sign up

Export Citation Format

Share Document