scholarly journals Commuting elements, simplicial spaces and filtrations of classifying spaces

Author(s):  
ALEJANDRO ADEM ◽  
FREDERICK R. COHEN ◽  
ENRIQUE TORRES GIESE

AbstractLet G denote a topological group. In this paper the descending central series of free groups are used to construct simplicial spaces of homomorphisms with geometric realizations B(q, G) that provide a filtration of the classifying space BG. In particular this setting gives rise to a single space constructed out of all the spaces of ordered commuting n–tuples of elements in G. Basic properties of these constructions are discussed, including the homotopy type and cohomology when the group G is either a finite group or a compact connected Lie group. For a finite group the construction gives rise to a covering space with monodromy related to a delicate result in group theory equivalent to the odd-order theorem of Feit–Thompson. The techniques here also yield a counting formula for the cardinality of Hom(π, G) where π is any descending central series quotient of a finitely generated free group. Another application is the determination of the structure of the spaces B(2, G) obtained from commuting n-tuples in G for finite groups such that the centralizer of every non–central element is abelian (known as transitively commutative groups), which played a key role in work by Suzuki on the structure of finite simple groups.

1988 ◽  
Vol 103 (3) ◽  
pp. 427-449 ◽  
Author(s):  
John C. Harris ◽  
Nicholas J. Kuhn

LetBGbe the classifying space of a finite groupG. Consider the problem of finding astabledecompositionintoindecomposablewedge summands. Such a decomposition naturally splitsE*(BG), whereE* is any cohomology theory.


2001 ◽  
Vol 64 (2) ◽  
pp. 472-488 ◽  
Author(s):  
D. NOTBOHM

For a prime p, a homology decomposition of the classifying space BG of a finite group G consist of a functor F : D → spaces from a small category into the category of spaces and a map hocolim F → BG from the homotopy colimit to BG that induces an isomorphism in mod-p homology. Associated to a modular representation G → Gl(n; [ ]p), a family of subgroups is constructed that is closed under conjugation, which gives rise to three different homology decompositions, the so-called subgroup, centralizer and normalizer decompositions. For an action of G on an [ ]p-vector space V, this collection consists of all subgroups of G with nontrivial p-Sylow subgroup which fix nontrivial (proper) subspaces of V pointwise. These decomposition formulas connect the modular representation theory of G with the homotopy theory of BG.


1969 ◽  
Vol 10 (3-4) ◽  
pp. 359-362
Author(s):  
Nita Bryce

M. Suzuki [3] has proved the following theorem. Let G be a finite group which has an involution t such that C = CG(t) ≅ SL(2, q) and q odd. Then G has an abelian odd order normal subgroup A such that G = CA and C ∩ A = 〈1〉.


2017 ◽  
Vol 16 (03) ◽  
pp. 1750045 ◽  
Author(s):  
Grigory Ryabov

A finite group [Formula: see text] is called a Schur group if any [Formula: see text]-ring over [Formula: see text] is associated in a natural way with a subgroup of [Formula: see text] that contains all right translations. We prove that the groups [Formula: see text], where [Formula: see text], are Schur. Modulo previously obtained results, it follows that every noncyclic Schur [Formula: see text]-group, where [Formula: see text] is an odd prime, is isomorphic to [Formula: see text] or [Formula: see text], [Formula: see text].


1988 ◽  
Vol 31 (3) ◽  
pp. 469-474
Author(s):  
Robert W. van der Waall

Let K be a field, G a finite group, V a (right) KG-module. If H is a subgroup of G, then, restricting the action of G on V to H, V is also a KH-module. Notation: VH.Suppose N is a normal subgroup of G. The KN-module VN is not irreducible in general, even when V is irreducible as KG-module. A part of the well-known theorem of A. H. Clifford [1, V.17.3] yields the following.


2010 ◽  
Vol 20 (07) ◽  
pp. 847-873 ◽  
Author(s):  
Z. AKHLAGHI ◽  
B. KHOSRAVI ◽  
M. KHATAMI

Let G be a finite group. The prime graph Γ(G) of G is defined as follows. The vertices of Γ(G) are the primes dividing the order of G and two distinct vertices p, p′ are joined by an edge if there is an element in G of order pp′. In [G. Y. Chen et al., Recognition of the finite almost simple groups PGL2(q) by their spectrum, Journal of Group Theory, 10 (2007) 71–85], it is proved that PGL(2, pk), where p is an odd prime and k > 1 is an integer, is recognizable by its spectrum. It is proved that if p > 19 is a prime number which is not a Mersenne or Fermat prime and Γ(G) = Γ(PGL(2, p)), then G has a unique nonabelian composition factor which is isomorphic to PSL(2, p). In this paper as the main result, we show that if p is an odd prime and k > 1 is an odd integer, then PGL(2, pk) is uniquely determined by its prime graph and so these groups are characterizable by their prime graphs.


Author(s):  
BJÖRN SCHUSTER

For any fixed prime p and any non-negative integer n there is a 2(pn − 1)-periodic generalized cohomology theory K(n)*, the nth Morava K-theory. Let G be a finite group and BG its classifying space. For some time now it has been conjectured that K(n)*(BG) is concentrated in even dimensions. Standard transfer arguments show that a finite group enjoys this property whenever its p-Sylow subgroup does, so one is reduced to verifying the conjecture for p-groups. It is easy to see that it holds for abelian groups, and it has been proved for some non-abelian groups as well, namely groups of order p3 ([7]) and certain wreath products ([3], [2]). In this note we consider finite (non-abelian) 2-groups with maximal normal cyclic subgroup, i.e. dihedral, semidihedral, quasidihedral and generalized quaternion groups of order a power of two.


2021 ◽  
Vol 13 (3) ◽  
pp. 59
Author(s):  
Nader Taffach

In this paper, we study the problem of how a finite group can be generated by some subgroups. In order to the finite simple groups, we show that any finite non-abelian simple group can be generated by two Sylow p1 - and p_2 -subgroups, where p_1  and p_2  are two different primes. We also show that for a given different prime numbers p  and q , any finite group can be generated by a Sylow p -subgroup and a q -subgroup.


2018 ◽  
Vol 235 ◽  
pp. 58-85
Author(s):  
SHIGEO KOSHITANI ◽  
CAROLINE LASSUEUR

Given an odd prime $p$ , we investigate the position of simple modules in the stable Auslander–Reiten quiver of the principal block of a finite group with noncyclic abelian Sylow $p$ -subgroups. In particular, we prove a reduction to finite simple groups. In the case that the characteristic is $3$ , we prove that simple modules in the principal block all lie at the end of their components.


1973 ◽  
Vol 25 (4) ◽  
pp. 881-887 ◽  
Author(s):  
E. D. Elgethun

In [8] I. N. Herstein conjectured that all the finite odd order sub-groups of the multiplicative group in a division ring are cyclic. This conjecture was proved false in general by S. A. Amitsur in [1]. In his paper Amitsur classifies all finite groups which can appear as a multiplicative subgroup of a division ring. Let D be a division ring with prime field k and let G be a finite group isomorphic to a multiplicative subgroup of D.


Sign in / Sign up

Export Citation Format

Share Document