counting formula
Recently Published Documents


TOTAL DOCUMENTS

40
(FIVE YEARS 10)

H-INDEX

4
(FIVE YEARS 0)

2021 ◽  
Vol 28 (4) ◽  
Author(s):  
Duncan Levear

In 1986, Shi derived the famous formula $(n+1)^{n-1}$ for the number of regions of the Shi arrangement, a hyperplane arrangement in ${R}^n$. There are at least two different bijective explanations of this formula, one by Pak and Stanley, another by Athanasiadis and Linusson. In 1996, Athanasiadis used the finite field method to derive a formula for the number of $k$-dimensional faces of the Shi arrangement for any $k$. Until now, the formula of Athanasiadis did not have a bijective explanation. In this paper, we extend a bijection for regions defined by Bernardi to obtain a bijection between the $k$-dimensional faces of the Shi arrangement for any $k$ and a set of decorated binary trees. Furthermore, we show how these trees can be converted to a simple set of functions of the form $f: [n-1] \to [n+1]$ together with a marked subset of $\text{Im}(f)$. This correspondence gives the first bijective proof of the formula of Athanasiadis. In the process, we also obtain a bijection and counting formula for the faces of the Catalan arrangement. All of our results generalize to both extended arrangements.


2021 ◽  
Vol 28 (4) ◽  
Author(s):  
Ankit Bisain ◽  
Eric Hanson

Bernardi has given a general formula for the number of regions of a deformation of the braid arrangement as a signed sum over boxed trees. We prove that each set of boxed trees which share an underlying (rooted labeled plane) tree contributes 0 or $\pm 1$ to this sum, and we give an algorithm for computing this value. For Ish-type arrangements, we further construct a sign-reversing involution which reduces Bernardi's signed sum to the enumeration of a set of (rooted labeled plane) trees. We conclude by explicitly enumerating the trees corresponding to the regions of Ish-type arrangements which are nested, recovering their known counting formula.


2021 ◽  
pp. 2150066
Author(s):  
Azeb Alghanemi ◽  
Hichem Chtioui

Fractional Yamabe-type equations of the form [Formula: see text] in [Formula: see text] on [Formula: see text], where [Formula: see text] is a bounded domain of [Formula: see text], [Formula: see text] is a given function on [Formula: see text] and [Formula: see text], is the fractional Laplacian are considered. Bahri’s estimates in the fractional setting will be proved and used to establish a global existence result through an index-counting formula.


Author(s):  
JOUNI PARKKONEN ◽  
FRÉDÉRIC PAULIN

Abstract We develop the relationship between quaternionic hyperbolic geometry and arithmetic counting or equidistribution applications, that arises from the action of arithmetic groups on quaternionic hyperbolic spaces, especially in dimension 2. We prove a Mertens counting formula for the rational points over a definite quaternion algebra A over ${\mathbb{Q}}$ in the light cone of quaternionic Hermitian forms, as well as a Neville equidistribution theorem of the set of rational points over A in quaternionic Heisenberg groups.


2020 ◽  
Vol 3 (2) ◽  
pp. 170-177
Author(s):  
Leomarich F Casinillo

Let G=(V(G), E(G)) be a path or cycle graph. A subset D of V(G) is a dominating set of G if for every u element of V(G)\D, there exists v element of D such that uv element of E(G), that is, N[D]=V(G). The domination number of G, denoted by gamma(G), is the smallest cardinality of a dominating set of G. A set D_1 subset of V(G) is a set containing dominating vertices of degree 2, that is, each vertex is internally stable. A set D_2 subset of V(G) is a set containing dominating vertices where one of the element say a element of D_2,  and the rest are of degree 2. A set  D_3 subset of V(G) is a set containing dominating vertices in which two of the elements say b, c element of D_3, deg(b)=deg(c)=1. This paper developed a new combinatorial formula that determines the number of ways of putting a dominating set in a path and cycle graphs of order n>=1 and n>=3, respectively. Further, a combinatorial function P^1_G(n),  P^2_G(n) and P^3_G(n) that determines the probability of getting the set D_1, D_2, and D_3, respectively in graph G of order n were constructed.


Author(s):  
Yasuo Ohno ◽  
Yoshitaka Sasaki

Recurrence formulas for generalized poly-Bernoulli polynomials are given. The formula gives a positive answer to a question raised by Kaneko. Further, as applications, annihilation formulas for Arakawa-Kaneko type zeta-functions and a counting formula for lonesum matrices of a certain type are also discussed.


10.37236/9069 ◽  
2020 ◽  
Vol 27 (3) ◽  
Author(s):  
Jérémie Bettinelli

We unify and extend previous bijections on plane quadrangulations to bipartite and quasibipartite plane maps. Starting from a bipartite plane map with a distinguished edge and two distinguished corners (in the same face or in two different faces), we build a new plane map with a distinguished vertex and two distinguished half-edges directed toward the vertex. The faces of the new map have the same degree as those of the original map, except at the locations of the distinguished corners, where each receives an extra degree: this is the location of the distinguished half-edges. This bijection provides a sampling algorithm for uniform maps with prescribed face degrees and allows to recover Tutte's famous counting formula for bipartite and quasibipartite plane maps. In addition, we explain how to decompose the previous bijection into two more elementary ones, which each transfer a degree from one face of the map to another face. In particular, these transfer bijections are simpler to manipulate than the previous one and this point of view simplifies the proofs.


2020 ◽  
Vol 102 (2) ◽  
Author(s):  
Makoto Sakamoto ◽  
Maki Takeuchi ◽  
Yoshiyuki Tatsuta
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document