scholarly journals A criterion for residual 𝑝-finiteness of arbitrary graphs of finite 𝑝-groups

2019 ◽  
Vol 22 (5) ◽  
pp. 837-844
Author(s):  
Gareth Wilkes

Abstract We establish conditions under which the fundamental group of a graph of finite p-groups is necessarily residually p-finite. The technique of proof is independent of previously established results of this type, and the result is also valid for infinite graphs of groups.

1994 ◽  
Vol 04 (04) ◽  
pp. 591-616 ◽  
Author(s):  
WALTER D. NEUMANN ◽  
MICHAEL SHAPIRO

We study the synchronous and asynchronous automatic structures on the fundamental group of a graph of groups in which each edge group is finite. Up to a natural equivalence relation, the set of biautomatic structures on such a graph product bijects to the product of the sets of biautomatic structures on the vertex groups. The set of automatic structures is much richer. Indeed, it is dense in the infinite product of the sets of automatic structures of all conjugates of the vertex groups. We classify these structures by a class of labelled graphs which “mimic” the underlying graph of the graph of groups. Analogous statements hold for asynchronous automatic structures. We also discuss the boundaries of these structures.


1988 ◽  
Vol 51 (3) ◽  
pp. 232-237 ◽  
Author(s):  
Frank Herrlich

2005 ◽  
Vol 97 (1) ◽  
pp. 49 ◽  
Author(s):  
Rui Okayasu

We construct a nuclear $C^*$-algebra associated with the fundamental group of a graph of groups of finite type. It is well-known that every word-hyperbolic group with zero-dimensional boundary, in other words, every group acting trees with finite stabilizers is given by the fundamental group of such a graph of groups. We show that our $C^*$-algebra is $*$-isomorphic to the crossed product arising from the associated boundary action and is also given by a Cuntz-Pimsner algebra. We also compute the K-groups and determine the ideal structures of our $C^*$-algebras.


2013 ◽  
Vol 50 (1) ◽  
pp. 31-50
Author(s):  
C. Zhang

The purpose of this article is to utilize some exiting words in the fundamental group of a Riemann surface to acquire new words that are represented by filling closed geodesics.


Author(s):  
Ahmed Abbes ◽  
Michel Gros

This chapter continues the construction and study of the p-adic Simpson correspondence and presents the global aspects of the theory of representations of the fundamental group and the torsor of deformations. After fixing the notation and general conventions, the chapter develops preliminaries and then introduces the results and complements on the notion of locally irreducible schemes. It also fixes the logarithmic geometry setting of the constructions and considers a number of results on the Koszul complex. Finally, it develops the formalism of additive categories up to isogeny and describes the inverse systems of a Faltings ringed topos, with a particular focus on the notion of adic modules and the finiteness conditions adapted to this setting. The chapter rounds up the discussion with sections on Higgs–Tate algebras and Dolbeault modules.


2021 ◽  
Vol 17 (3) ◽  
pp. 1-38
Author(s):  
Ali Bibak ◽  
Charles Carlson ◽  
Karthekeyan Chandrasekaran

Finding locally optimal solutions for MAX-CUT and MAX- k -CUT are well-known PLS-complete problems. An instinctive approach to finding such a locally optimum solution is the FLIP method. Even though FLIP requires exponential time in worst-case instances, it tends to terminate quickly in practical instances. To explain this discrepancy, the run-time of FLIP has been studied in the smoothed complexity framework. Etscheid and Röglin (ACM Transactions on Algorithms, 2017) showed that the smoothed complexity of FLIP for max-cut in arbitrary graphs is quasi-polynomial. Angel, Bubeck, Peres, and Wei (STOC, 2017) showed that the smoothed complexity of FLIP for max-cut in complete graphs is ( O Φ 5 n 15.1 ), where Φ is an upper bound on the random edge-weight density and Φ is the number of vertices in the input graph. While Angel, Bubeck, Peres, and Wei’s result showed the first polynomial smoothed complexity, they also conjectured that their run-time bound is far from optimal. In this work, we make substantial progress toward improving the run-time bound. We prove that the smoothed complexity of FLIP for max-cut in complete graphs is O (Φ n 7.83 ). Our results are based on a carefully chosen matrix whose rank captures the run-time of the method along with improved rank bounds for this matrix and an improved union bound based on this matrix. In addition, our techniques provide a general framework for analyzing FLIP in the smoothed framework. We illustrate this general framework by showing that the smoothed complexity of FLIP for MAX-3-CUT in complete graphs is polynomial and for MAX - k - CUT in arbitrary graphs is quasi-polynomial. We believe that our techniques should also be of interest toward showing smoothed polynomial complexity of FLIP for MAX - k - CUT in complete graphs for larger constants k .


Sign in / Sign up

Export Citation Format

Share Document