scholarly journals Arithmetic lattices in unipotent algebraic groups

2020 ◽  
Vol 23 (2) ◽  
pp. 299-312 ◽  
Author(s):  
Khalid Bou-Rabee ◽  
Daniel Studenmund

AbstractFixing an arithmetic lattice Γ in an algebraic group G, the commensurability growth function assigns to each n the cardinality of the set of subgroups Δ with {[\Gamma:\Gamma\cap\Delta][\Delta:\Gamma\cap\Delta]=n}. This growth function gives a new setting where methods of F. Grunewald, D. Segal and G. C. Smith’s “Subgroups of finite index in nilpotent groups” apply to study arithmetic lattices in an algebraic group. In particular, we show that, for any unipotent algebraic {\mathbb{Z}}-group with arithmetic lattice Γ, the Dirichlet function associated to the commensurability growth function satisfies an Euler decomposition. Moreover, the local parts are rational functions in {p^{-s}}, where the degrees of the numerator and denominator are independent of p. This gives regularity results for the set of arithmetic lattices in G.

2014 ◽  
Vol 51 (4) ◽  
pp. 547-555 ◽  
Author(s):  
B. Wehrfritz

Let G be a nilpotent group with finite abelian ranks (e.g. let G be a finitely generated nilpotent group) and suppose φ is an automorphism of G of finite order m. If γ and ψ denote the associated maps of G given by \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage{bbm} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $$\gamma :g \mapsto g^{ - 1} \cdot g\phi and \psi :g \mapsto g \cdot g\phi \cdot g\phi ^2 \cdots \cdot \cdot g\phi ^{m - 1} for g \in G,$$ \end{document} then Gγ · kerγ and Gψ · ker ψ are both very large in that they contain subgroups of finite index in G.


2016 ◽  
Vol 152 (8) ◽  
pp. 1697-1724 ◽  
Author(s):  
Tanmay Deshpande

In this paper, we extend the notion of Shintani descent to general (possibly disconnected) algebraic groups defined over a finite field $\mathbb{F}_{q}$. For this, it is essential to treat all the pure inner $\mathbb{F}_{q}$-rational forms of the algebraic group at the same time. We prove that the notion of almost characters (introduced by Shoji using Shintani descent) is well defined for any neutrally unipotent algebraic group, i.e. an algebraic group whose neutral connected component is a unipotent group. We also prove that these almost characters coincide with the ‘trace of Frobenius’ functions associated with Frobenius-stable character sheaves on neutrally unipotent groups. In the course of the proof, we also prove that the modular categories that arise from Boyarchenko and Drinfeld’s theory of character sheaves on neutrally unipotent groups are in fact positive integral, confirming a conjecture due to Drinfeld.


2010 ◽  
Vol 20 (05) ◽  
pp. 661-669 ◽  
Author(s):  
TARA C. DAVIS

We prove that a subgroup of a finitely generated free nilpotent group F is undistorted if and only if it is a retract of a subgroup of finite index in F.


2007 ◽  
Vol 82 (3) ◽  
pp. 315-324 ◽  
Author(s):  
Giovanni Falcone ◽  
Peter Plaumann ◽  
Karl Strambach

AbstractWe call an algebraic group monothetic if it possesses a dense cyclic subgroup. For an arbitrary field k we describe the structure of all, not necessarily affine, monothetic k-groups G and determine in which cases G has a k-rational generator.


1963 ◽  
Vol 22 ◽  
pp. 33-56 ◽  
Author(s):  
Robert Steinberg

Our purpose here is to study the irreducible representations of semisimple algebraic groups of characteristic p 0, in particular the rational representations, and to determine all of the representations of corresponding finite simple groups. (Each algebraic group is assumed to be defined over a universal field which is algebraically closed and of infinite degree of transcendence over the prime field, and all of its representations are assumed to take place on vector spaces over this field.)


1957 ◽  
Vol 11 ◽  
pp. 125-130 ◽  
Author(s):  
Takashi Ono

Let K be any field, and L a separable extension of K of finite degree. L has a structure of vector space over K, and we shall denote this space by V. The space of endomorphisms of V will be denoted by Let x be any element of L, and N(x) the norm of x relative to the extension L/K. N is then a function defined on V with values in K. We shall call N the norm form on V. The multiplicative groups of non-zero elements of K and L will be denoted by K* and L* respectively. Let H be any subgroup of if K*. Then the elements z of L* such that N(z)∈H form a subgroup of L*, which we shall denote by GH. On the other hand the elements s of such that N(sx) = Λ(s)N(x) with Λ(s)∈H for all X∈V, form obviously a subgroup of GL(V), which we shall denote by becomes an algebraic group if H=K* or {1}. In case will mean the group of linear transformations of V leaving semi-invariant the norm form of L/K and in case will mean the group of linear transformations of V leaving invariant the norm form of L/K.


Author(s):  
P. Bala ◽  
R. W. Carter

LetGbe a simple adjoint algebraic group over an algebraically closed fieldK. We are concerned to describe the conjugacy classes of unipotent elements ofG. Goperates on its Lie algebra g by means of the adjoint action and we may consider classes of nilpotent elements of g under this action. It has been shown by Springer (11) that there is a bijection between the unipotent elements ofGand the nilpotent elements ofgwhich preserves theG-action, provided that the characteristic ofKis either 0 or a ‘good prime’ forG. Thus we may concentrate on the problem of classifying the nilpotent elements of g under the adjointG-action.


2017 ◽  
Vol 153 (10) ◽  
pp. 2195-2213
Author(s):  
Charles De Clercq

We prove that the standard motives of a semisimple algebraic group$G$with coefficients in a field of order$p$are determined by the upper motives of the group $G$. As a consequence of this result, we obtain a partial version of the motivic rigidity conjecture of special linear groups. The result is then used to construct the higher indexes which characterize the motivic equivalence of semisimple algebraic groups. The criteria of motivic equivalence derived from the expressions of these indexes produce a dictionary between motives, algebraic structures and the birational geometry of twisted flag varieties. This correspondence is then described for special linear groups and orthogonal groups (the criteria associated with other groups being obtained in De Clercq and Garibaldi [Tits$p$-indexes of semisimple algebraic groups, J. Lond. Math. Soc. (2)95(2017) 567–585]). The proofs rely on the Levi-type motivic decompositions of isotropic twisted flag varieties due to Chernousov, Gille and Merkurjev, and on the notion of pondered field extensions.


2018 ◽  
Vol 19 (4) ◽  
pp. 1031-1091
Author(s):  
Thierry Stulemeijer

Given a locally finite leafless tree $T$, various algebraic groups over local fields might appear as closed subgroups of $\operatorname{Aut}(T)$. We show that the set of closed cocompact subgroups of $\operatorname{Aut}(T)$ that are isomorphic to a quasi-split simple algebraic group is a closed subset of the Chabauty space of $\operatorname{Aut}(T)$. This is done via a study of the integral Bruhat–Tits model of $\operatorname{SL}_{2}$ and $\operatorname{SU}_{3}^{L/K}$, that we carry on over arbitrary local fields, without any restriction on the (residue) characteristic. In particular, we show that in residue characteristic $2$, the Tits index of simple algebraic subgroups of $\operatorname{Aut}(T)$ is not always preserved under Chabauty limits.


Sign in / Sign up

Export Citation Format

Share Document