scholarly journals A note on vertices of indecomposable tensor products

2020 ◽  
Vol 23 (3) ◽  
pp. 385-391
Author(s):  
Markus Linckelmann

AbstractG. Navarro raised the question of when two vertices of two indecomposable modules over a finite group algebra generate a Sylow p-subgroup. The present note provides a sufficient criterion for this to happen. This generalises a result by Navarro for simple modules over finite p-solvable groups, which is the main motivation for this note.

2015 ◽  
Vol 14 (06) ◽  
pp. 1550085 ◽  
Author(s):  
Jonas Gonçalves Lopes

Given a partial action α of a group G on the group algebra FH, where H is a finite group and F is a field whose characteristic p divides the order of H, we investigate the associativity question of the partial crossed product FH *α G. If FH *α G is associative for any G and any α, then FH is called strongly associative. We characterize the strongly associative modular group algebras FH with H being a p-solvable group.


2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Jiakuan Lu ◽  
Kaisun Wu ◽  
Wei Meng

AbstractLet 𝐺 be a finite group. An irreducible character of 𝐺 is called a 𝒫-character if it is an irreducible constituent of (1_{H})^{G} for some maximal subgroup 𝐻 of 𝐺. In this paper, we obtain some conditions for a solvable group 𝐺 to be 𝑝-nilpotent or 𝑝-closed in terms of 𝒫-characters.


2018 ◽  
Vol 235 ◽  
pp. 58-85
Author(s):  
SHIGEO KOSHITANI ◽  
CAROLINE LASSUEUR

Given an odd prime $p$ , we investigate the position of simple modules in the stable Auslander–Reiten quiver of the principal block of a finite group with noncyclic abelian Sylow $p$ -subgroups. In particular, we prove a reduction to finite simple groups. In the case that the characteristic is $3$ , we prove that simple modules in the principal block all lie at the end of their components.


2019 ◽  
Vol 22 (5) ◽  
pp. 953-974
Author(s):  
Ángel del Río ◽  
Mariano Serrano

Abstract H. J. Zassenhaus conjectured that any unit of finite order and augmentation 1 in the integral group ring {\mathbb{Z}G} of a finite group G is conjugate in the rational group algebra {\mathbb{Q}G} to an element of G. We prove the Zassenhaus conjecture for the groups {\mathrm{SL}(2,p)} and {\mathrm{SL}(2,p^{2})} with p a prime number. This is the first infinite family of non-solvable groups for which the Zassenhaus conjecture has been proved. We also prove that if {G=\mathrm{SL}(2,p^{f})} , with f arbitrary and u is a torsion unit of {\mathbb{Z}G} with augmentation 1 and order coprime with p, then u is conjugate in {\mathbb{Q}G} to an element of G. By known results, this reduces the proof of the Zassenhaus conjecture for these groups to proving that every unit of {\mathbb{Z}G} of order a multiple of p and augmentation 1 has order actually equal to p.


2013 ◽  
Vol 12 (05) ◽  
pp. 1250204
Author(s):  
AMIN SAEIDI ◽  
SEIRAN ZANDI

Let G be a finite group and let N be a normal subgroup of G. Assume that N is the union of ξ(N) distinct conjugacy classes of G. In this paper, we classify solvable groups G in which the set [Formula: see text] has at most three elements. We also compute the set [Formula: see text] in most cases.


1975 ◽  
Vol 16 (1) ◽  
pp. 22-28 ◽  
Author(s):  
Wolfgang Hamernik

In this note relations between the structure of a finite group G and ringtheoretical properties of the group algebra FG over a field F with characteristic p > 0 are investigated. Denoting by J(R) the Jacobson radical and by Z(R) the centre of the ring R, our aim is to prove the following theorem generalizing results of Wallace [10] and Spiegel [9]:Theorem. Let G be a finite group and let F be an arbitrary field of characteristic p > 0. Denoting by BL the principal block ideal of the group algebra FG the following statements are equivalent:(i) J(B1) ≤ Z(B1)(ii) J(B1)is commutative,(iii) G is p-nilpotent with abelian Sylowp-subgroups.


1970 ◽  
Vol 2 (2) ◽  
pp. 267-274
Author(s):  
John Poland

If G is a finite group and P is a group-theoretic property, G will be called P-max-core if for every maximal subgroup M of G, M/MG has property P where MG = ∩ is the core of M in G. In a joint paper with John D. Dixon and A.H. Rhemtulla, we showed that if p is an odd prime and G is (p-nilpotent)-max-core, then G is p-solvable, and then using the techniques of the theory of solvable groups, we characterized nilpotent-max-core groups as finite nilpotent-by-nilpotent groups. The proof of the first result used John G. Thompson's p-nilpotency criterion and hence required p > 2. In this paper I show that supersolvable-max-core groups (and hence (2-nilpotent)-max-core groups) need not be 2-solvable (that is, solvable). Also I generalize the second result, among others, and characterize (p-nilpotent)-max-core groups (for p an odd prime) as finite nilpotent-by-(p-nilpotent) groups.


2016 ◽  
Vol 99 (113) ◽  
pp. 257-264 ◽  
Author(s):  
Somayeh Heydari ◽  
Neda Ahanjideh

For a finite group G, let cd(G) be the set of irreducible complex character degrees of G forgetting multiplicities and X1(G) be the set of all irreducible complex character degrees of G counting multiplicities. Suppose that p is a prime number. We prove that if G is a finite group such that |G| = |PGL(2,p) |, p ? cd(G) and max(cd(G)) = p+1, then G ? PGL(2,p), SL(2, p) or PSL(2,p) x A, where A is a cyclic group of order (2, p-1). Also, we show that if G is a finite group with X1(G) = X1(PGL(2,pn)), then G ? PGL(2, pn). In particular, this implies that PGL(2, pn) is uniquely determined by the structure of its complex group algebra.


2010 ◽  
Vol 81 (2) ◽  
pp. 317-328 ◽  
Author(s):  
MARCEL HERZOG ◽  
PATRIZIA LONGOBARDI ◽  
MERCEDE MAJ

AbstractLet G be a finitely generated group. We investigate the graph ΓM(G), whose vertices are the maximal subgroups of G and where two vertices M1 and M2 are joined by an edge whenever M1∩M2≠1. We show that if G is a finite simple group then the graph ΓM(G) is connected and its diameter is 62 at most. We also show that if G is a finite group, then ΓM(G) either is connected or has at least two vertices and no edges. Finite groups G with a nonconnected graph ΓM(G) are classified. They are all solvable groups, and if G is a finite solvable group with a connected graph ΓM(G), then the diameter of ΓM(G) is at most 2. In the infinite case, we determine the structure of finitely generated infinite nonsimple groups G with a nonconnected graph ΓM(G). In particular, we show that if G is a finitely generated locally graded group with a nonconnected graph ΓM(G), then G must be finite.


Sign in / Sign up

Export Citation Format

Share Document