scholarly journals A periodicity theorem for acylindrically hyperbolic groups

2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Oleg Bogopolski

AbstractWe generalize a well-known periodicity lemma from the case of free groups to the case of acylindrically hyperbolic groups. This generalization has been used to describe solutions of certain equations in acylindrically hyperbolic groups and to characterize verbally closed finitely generated acylindrically hyperbolic subgroups of finitely presented groups.

1985 ◽  
Vol 50 (3) ◽  
pp. 743-772 ◽  
Author(s):  
Fritz Grunewald ◽  
Daniel Segal

This paper is a continuation of our previous work in [12]. The results, and some applications, have been described in the announcement [13]; it may be useful to discuss here, a little more fully, the nature and purpose of this work.We are concerned basically with three kinds of algorithmic problem: (1) isomorphism problems, (2) “orbit problems”, and (3) “effective generation”.(1) Isomorphism problems. Here we have a class of algebraic objects of some kind, and ask: is there a uniform algorithm for deciding whether two arbitrary members of are isomorphic? In most cases, the answer is no: no such algorithm exists. Indeed this has been one of the most notable applications of methods of mathematical logic in algebra (see [26, Chapter IV, §4] for the case where is the class of all finitely presented groups). It turns out, however, that when consists of objects which are in a certain sense “finite-dimensional”, then the isomorphism problem is indeed algorithmically soluble. We gave such algorithms in [12] for the following cases: = {finitely generated nilpotent groups}; = {(not necessarily associative) rings whose additive group is finitely generated}; = {finitely Z-generated modules over a fixed finitely generated ring}.Combining the methods of [12] with his own earlier work, Sarkisian has obtained analogous results with the integers replaced by the rationals: in [20] and [21] he solves the isomorphism problem for radicable torsion-free nilpotent groups of finite rank and for finite-dimensional Q-algebras.


2003 ◽  
Vol 13 (03) ◽  
pp. 287-302 ◽  
Author(s):  
André Nies

For various proper inclusions of classes of groups [Formula: see text], we obtain a group [Formula: see text] and a first-order sentence φ such that H⊨φ but no G∈ C satisfies φ. The classes we consider include the finite, finitely presented, finitely generated with and without solvable word problem, and all countable groups. For one separation, we give an example of a f.g. group, namely ℤp ≀ ℤ for some prime p, which is the only f.g. group satisfying an appropriate first-order sentence. A further example of such a group, the free step-2 nilpotent group of rank 2, is used to show that true arithmetic Th(ℕ,+,×) can be interpreted in the theory of the class of finitely presented groups and other classes of f.g. groups.


2014 ◽  
Vol 6 (2) ◽  
Author(s):  
Benjamin Fine ◽  
Anthony Gaglione ◽  
Gerhard Rosenberger ◽  
Dennis Spellman

AbstractIn this paper we survey and reflect upon several aspects of the theory of infinite finitely generated and finitely presented groups that were originally motivated by work of Gilbert Baumslag. All but the last of the topics we have chosen are all related in one way or another to the theory of limit groups and the solution of the Tarski problems. These include the residually free and fully residually free properties and the big powers condition; Baumslag doubles and extensions of centralizers; residually-𝒳 groups and extensions of results of Benjamin Baumslag and finally the relationship between CT and CSA groups.


2004 ◽  
Vol 70 (2) ◽  
pp. 199-205 ◽  
Author(s):  
Manuel Cárdenas ◽  
Francisco F. Lasheras ◽  
Ranja Roy

In this paper, we show that the direct of infinite finitely presented groups is always properly 3-realisable. We also show that classical hyperbolic groups are properly 3-realisable. We recall that a finitely presented group G is said to be properly 3-realisable if there exists a compact 2-polyhedron K with π1 (K) ≅ G and whose universal cover K̃ has the proper homotopy type of a (p.1.) 3-manifold with boundary. The question whether or not every finitely presented is properly 3-realisable remains open.


2016 ◽  
Vol 26 (07) ◽  
pp. 1467-1482 ◽  
Author(s):  
Samuel M. Corson

In this paper, we prove the claim given in the title. A group [Formula: see text] is noncommutatively slender if each map from the fundamental group of the Hawaiian Earring to [Formula: see text] factors through projection to a canonical free subgroup. Higman, in his seminal 1952 paper [Unrestricted free products and varieties of topological groups, J. London Math. Soc. 27 (1952) 73–81], proved that free groups are noncommutatively slender. Such groups were first defined by Eda in [Free [Formula: see text]-products and noncommutatively slender groups, J. Algebra 148 (1992) 243–263]. Eda has asked which finitely presented groups are noncommutatively slender. This result demonstrates that random finitely presented groups in the few-relator sense are noncommutatively slender.


2018 ◽  
Vol 27 (14) ◽  
pp. 1850074
Author(s):  
Graham Ellis ◽  
Cédric Fragnaud

The number [Formula: see text] of colorings of a knot [Formula: see text] by a finite quandle [Formula: see text] has been used in the literature to distinguish between knot types. In this paper, we suggest a refinement [Formula: see text] to this knot invariant involving any computable functor [Formula: see text] from finitely presented groups to finitely generated abelian groups. We are mainly interested in the functor [Formula: see text] that sends each finitely presented group [Formula: see text] to its abelianization [Formula: see text]. We describe algorithms needed for computing the refined invariant and illustrate implementations that have been made available as part of the HAP package for the GAP system for computational algebra. We use these implementations to investigate the performance of the refined invariant on prime knots with [Formula: see text] crossings.


2014 ◽  
Vol 06 (02) ◽  
pp. 167-192 ◽  
Author(s):  
Hao Liang

The Equation problem in finitely presented groups asks if there exists an algorithm which determines in finite amount of time whether any given equation system has a solution or not. We show that the Equation Problem in central extensions of hyperbolic groups is solvable.


Sign in / Sign up

Export Citation Format

Share Document