scholarly journals Finite simple exceptional groups of Lie type in which all subgroups of odd index are pronormal

2020 ◽  
Vol 23 (6) ◽  
pp. 999-1016
Author(s):  
Anatoly S. Kondrat’ev ◽  
Natalia V. Maslova ◽  
Danila O. Revin

AbstractA subgroup H of a group G is said to be pronormal in G if H and {H^{g}} are conjugate in {\langle H,H^{g}\rangle} for every {g\in G}. In this paper, we determine the finite simple groups of type {E_{6}(q)} and {{}^{2}E_{6}(q)} in which all the subgroups of odd index are pronormal. Thus, we complete a classification of finite simple exceptional groups of Lie type in which all the subgroups of odd index are pronormal.

2009 ◽  
Vol 12 ◽  
pp. 82-119 ◽  
Author(s):  
László Babai ◽  
Péter P. Pálfy ◽  
Jan Saxl

AbstractA p-regular element in a finite group is an element of order not divisible by the prime number p. We show that for every prime p and every finite simple group S, a fair proportion of elements of S is p-regular. In particular, we show that the proportion of p-regular elements in a finite classical simple group (not necessarily of characteristic p) is greater than 1/(2n), where n – 1 is the dimension of the projective space on which S acts naturally. Furthermore, in an exceptional group of Lie type this proportion is greater than 1/15. For the alternating group An, this proportion is at least 26/(27√n), and for sporadic simple groups, at least 2/29.We also show that for an arbitrary field F, if the simple group S is a quotient of a finite subgroup of GLn(F) then for any prime p, the proportion of p-regular elements in S is at least min{1/31, 1/(2n)}.Along the way we obtain estimates for the proportion of elements of certain primitive prime divisor orders in exceptional groups, complementing work by Niemeyer and Praeger (1998).Our result shows that in finite simple groups, p-regular elements can be found efficiently by random sampling. This is a key ingredient to recent polynomial-time Monte Carlo algorithms for matrix groups.Finally we complement our lower bound results with the following upper bound: for all n ≥ 2 there exist infinitely many prime powers q such that the proportion of elements of odd order in PSL(n,q) is less than 3/√n.


Author(s):  
Juan Martínez ◽  
Alexander Moretó

In 2014, Baumslag and Wiegold proved that a finite group G is nilpotent if and only if o(xy) = o(x)o(y) for every x, y ∈ G with (o(x), o(y)) = 1. This has led to a number of results that characterize the nilpotence of a group (or the existence of nilpotent Hall subgroups, or the existence of normal Hall subgroups) in terms of prime divisors of element orders. Here, we look at these results with a new twist. The first of our main results asserts that G is nilpotent if and only if o(xy) ⩽ o(x)o(y) for every x, y ∈ G of prime power order with (o(x), o(y)) = 1. As an immediate consequence, we recover the Baumslag–Wiegold theorem. The proof of this result is elementary. We prove some variations of this result that depend on the classification of finite simple groups.


2003 ◽  
Vol 171 ◽  
pp. 197-206
Author(s):  
Inna Korchagina

AbstractThis paper is a contribution to the “revision” project of Gorenstein, Lyons and Solomon, whose goal is to produce a unified proof of the Classification of Finite Simple Groups.


1971 ◽  
Vol 12 (1) ◽  
pp. 1-14 ◽  
Author(s):  
Bhama Srinivasan

Let K be an algebraically closed field of characteristic ρ >0. If G is a connected, simple connected, semisimple linear algebraic group defined over K and σ an endomorphism of G onto G such that the subgroup Gσ of fixed points of σ is finite, Steinberg ([6] [7]) has shown that there is a complex irreducible character χ of Gσ with the following properties. χ vanishes at all elements of Gσ which are not semi- simple, and, if x ∈ G is semisimple, χ(x) = ±n(x) where n(x)is the order of a Sylow p-subgroup of (ZG(x))σ (ZG(x) is the centraliser of x in G). If G is simple he has, in [6], identified the possible groups Gσ they are the Chevalley groups and their twisted analogues over finite fields, that is, the ‘simply connected’ versions of finite simple groups of Lie type. In this paper we show, under certain restrictions on the type of the simple algebraic group G an on the characteristic of K, that χ can be expressed as a linear combination with integral coefficients of characters induced from linear characters of certain naturally defined subgroups of Gσ. This expression for χ gives an explanation for the occurence of n(x) in the formula for χ (x), and also gives an interpretation for the ± 1 occuring in the formula in terms of invariants of the reductive algebraic group ZG(x).


2004 ◽  
Author(s):  
Daniel Gorenstein ◽  
Richard Lyons ◽  
Ronald Solomon

2011 ◽  
Author(s):  
Michael Aschbacher ◽  
Richard Lyons ◽  
Stephen Smith ◽  
Ronald Solomon

2018 ◽  
Author(s):  
Daniel Gorenstein ◽  
Richard Lyons ◽  
Ronald Solomon

Sign in / Sign up

Export Citation Format

Share Document