scholarly journals Supervised Learning and Knowledge-Based Approaches Applied to Biomedical Word Sense Disambiguation

2017 ◽  
Vol 14 (4) ◽  
Author(s):  
Rui Antunes ◽  
Sérgio Matos

AbstractWord sense disambiguation (WSD) is an important step in biomedical text mining, which is responsible for assigning an unequivocal concept to an ambiguous term, improving the accuracy of biomedical information extraction systems. In this work we followed supervised and knowledge-based disambiguation approaches, with the best results obtained by supervised means. In the supervised method we used bag-of-words as local features, and word embeddings as global features. In the knowledge-based method we combined word embeddings, concept textual definitions extracted from the UMLS database, and concept association values calculated from the MeSH co-occurrence counts from MEDLINE articles. Also, in the knowledge-based method, we tested different word embedding averaging functions to calculate the surrounding context vectors, with the goal to give more importance to closest words of the ambiguous term. The MSH WSD dataset, the most common dataset used for evaluating biomedical concept disambiguation, was used to evaluate our methods. We obtained a top accuracy of 95.6 % by supervised means, while the best knowledge-based accuracy was 87.4 %. Our results show that word embedding models improved the disambiguation accuracy, proving to be a powerful resource in the WSD task.

Author(s):  
Pushpak Bhattacharyya ◽  
Mitesh Khapra

This chapter discusses the basic concepts of Word Sense Disambiguation (WSD) and the approaches to solving this problem. Both general purpose WSD and domain specific WSD are presented. The first part of the discussion focuses on existing approaches for WSD, including knowledge-based, supervised, semi-supervised, unsupervised, hybrid, and bilingual approaches. The accuracy value for general purpose WSD as the current state of affairs seems to be pegged at around 65%. This has motivated investigations into domain specific WSD, which is the current trend in the field. In the latter part of the chapter, we present a greedy neural network inspired algorithm for domain specific WSD and compare its performance with other state-of-the-art algorithms for WSD. Our experiments suggest that for domain-specific WSD, simply selecting the most frequent sense of a word does as well as any state-of-the-art algorithm.


2019 ◽  
Vol 26 (5) ◽  
pp. 438-446 ◽  
Author(s):  
Ahmad Pesaranghader ◽  
Stan Matwin ◽  
Marina Sokolova ◽  
Ali Pesaranghader

Abstract Objective In biomedicine, there is a wealth of information hidden in unstructured narratives such as research articles and clinical reports. To exploit these data properly, a word sense disambiguation (WSD) algorithm prevents downstream difficulties in the natural language processing applications pipeline. Supervised WSD algorithms largely outperform un- or semisupervised and knowledge-based methods; however, they train 1 separate classifier for each ambiguous term, necessitating a large number of expert-labeled training data, an unattainable goal in medical informatics. To alleviate this need, a single model that shares statistical strength across all instances and scales well with the vocabulary size is desirable. Materials and Methods Built on recent advances in deep learning, our deepBioWSD model leverages 1 single bidirectional long short-term memory network that makes sense prediction for any ambiguous term. In the model, first, the Unified Medical Language System sense embeddings will be computed using their text definitions; and then, after initializing the network with these embeddings, it will be trained on all (available) training data collectively. This method also considers a novel technique for automatic collection of training data from PubMed to (pre)train the network in an unsupervised manner. Results We use the MSH WSD dataset to compare WSD algorithms, with macro and micro accuracies employed as evaluation metrics. deepBioWSD outperforms existing models in biomedical text WSD by achieving the state-of-the-art performance of 96.82% for macro accuracy. Conclusions Apart from the disambiguation improvement and unsupervised training, deepBioWSD depends on considerably less number of expert-labeled data as it learns the target and the context terms jointly. These merit deepBioWSD to be conveniently deployable in real-time biomedical applications.


2017 ◽  
Vol 43 (3) ◽  
pp. 593-617 ◽  
Author(s):  
Sascha Rothe ◽  
Hinrich Schütze

We present AutoExtend, a system that combines word embeddings with semantic resources by learning embeddings for non-word objects like synsets and entities and learning word embeddings that incorporate the semantic information from the resource. The method is based on encoding and decoding the word embeddings and is flexible in that it can take any word embeddings as input and does not need an additional training corpus. The obtained embeddings live in the same vector space as the input word embeddings. A sparse tensor formalization guarantees efficiency and parallelizability. We use WordNet, GermaNet, and Freebase as semantic resources. AutoExtend achieves state-of-the-art performance on Word-in-Context Similarity and Word Sense Disambiguation tasks.


2014 ◽  
Vol 3 (3) ◽  
pp. 51-63 ◽  
Author(s):  
Arindam Roy ◽  
Sunita Sarkar ◽  
Bipul Syam Purkayastha

Sign in / Sign up

Export Citation Format

Share Document