scholarly journals Thermoelectric Thomson Relations Revisited for a Linear Energy Converter

2019 ◽  
Vol 44 (3) ◽  
pp. 315-332 ◽  
Author(s):  
Saul Gonzalez-Hernandez ◽  
Luis-Antonio Arias-Hernandez

Abstract In this paper we revisit the classic thermocouple model, as a Linear Irreversible Thermodynamic (LIT) energy converter. In this model we have two types of phenomenological coefficients: the first comes from some microscopic models, such as the coefficient associated with the electric conductivity, and the second comes from experimental facts, such as the coefficient associated with the Seebeck power. We show that in the last case, these coefficients can be related to the thermodynamic operation modes of the energy converter. These relations between the experimental phenomenological coefficients and the regimes of performance allow us to propose a first and a second Thomson-type relation, which give us 12 new relations between the Seebeck power, the Peltier heat and the Thomson heat. With this purpose we develop the idea of non-isothermal linear energy converters operated either “directly” (like a heat engine) or “inversely” (like a refrigerator). We analyze the energetics associated to these converters operating under steady states corresponding to different modes of performance, all of them satisfying the fundamental Onsager symmetry relations.

Author(s):  
V. A. Cimmelli ◽  
A. Sellitto ◽  
D. Jou

We consider non-equilibrium steady-state situations for thermoelectric systems with non-local and non-linear effects. We show that the Onsager symmetry relations for effective transport coefficients break down. We also estimate the consequences of such a breakdown for the efficiency of the thermoelectric energy conversion which, under some conditions, could be higher than in the usual linear regime with Onsager symmetry.


2008 ◽  
Vol 77 (1) ◽  
Author(s):  
L. A. Arias-Hernandez ◽  
F. Angulo-Brown ◽  
R. T. Paez-Hernandez

2020 ◽  
Vol 45 (3) ◽  
pp. 269-290 ◽  
Author(s):  
Sergio Levario-Medina ◽  
Gabriel Valencia-Ortega ◽  
Marco Antonio Barranco-Jiménez

AbstractThe fundamental issue in the energetic performance of power plants, working both as traditional fuel engines and as combined-cycle turbines (gas-steam), lies in quantifying the internal irreversibilities which are associated with the working substance operating in cycles. The purpose of several irreversible energy converter models is to find objective thermodynamic functions that determine operation modes for real thermal engines and at the same time study the trade-off between energy losses per cycle and the useful energy. As those objective functions, we focus our attention on a generalization of the so-called ecological function in terms of an ϵ parameter that depends on the particular heat transfer law used in the irreversible heat engine model. In this work, we mathematically describe the configuration space of an irreversible Curzon–Ahlborn type model. The above allows to determine the optimal relations between the model parameters so that a power plant operates in physically accessible regions, taking into account internal irreversibilities, introduced in two different ways (additively and multiplicatively). In addition, we establish the conditions that the ϵ parameter must fulfill for the energy converter to work in an optimal region between maximum power output and maximum efficiency points.


Author(s):  
Gregory G. Vilensky

A new theoretical model of ultrasound propagation in soft biological media is presented based on an extended thermodynamics formalism. The long-standing experimental conjecture claiming that a continuous distribution of internal degrees of freedom can be used to model ultrasound in biological media is given theoretical justification. A strategy to derive a well-defined set of equations coupling the balance equations of mass, momentum, energy and entropy with relaxation kinetics of a medium characterized by a continuous distribution of internal states is presented. We demonstrate that new phenomenological coefficients of the proposed governing equations can be extracted directly from experimental data. Our theory successfully explains the anomalous attenuation law found in experiments with biological media that is inconsistent with the conventional models using a finite number of internal degrees of freedom. The results presented offer new possibilities for medical applications of high-intensity ultrasound and ultrasound emission methods to study matter with complex internal structure. These techniques include using pressure relaxation methods for accurate investigation of fast protein folding and a variety of other applications for media where irreversible thermodynamic simulations are essential.


1974 ◽  
Vol 9 (1) ◽  
pp. 431-434 ◽  
Author(s):  
H. N. W. Lekkerkerker ◽  
W. G. Laidlaw

Sign in / Sign up

Export Citation Format

Share Document