scholarly journals Performance Characteristics of a Combination Solar Photovoltaic Heat Engine Energy Converter

Author(s):  
Donald L. Chubb
2019 ◽  
Vol 1378 ◽  
pp. 032088
Author(s):  
Afolabi Gbenga ◽  
Orovwode Hope ◽  
Abdulkareem Ademola ◽  
Adoghe Anthony ◽  
Matthew Simeon

Author(s):  
Spyros A. Mavrakos ◽  
George M. Katsaounis ◽  
Ioannis K. Chatjigeorgiou

The paper deals with the presentation of a model to predict performance characteristics of a tightly moored piston-like wave energy converter which is allowed to move in heave, pitch and sway modes of motion. The WEC’s piston-like arrangement consists of two floating concentric cylinders, the geometry of which allow the existence of a cylindrical moonpool between the external cylinder, the ‘torus’ and the inner cylinder, the ‘piston’. The first-order hydrodynamic characteristics of the floating device, i.e. exciting wave forces and hydrodynamic parameters, are evaluated using a linearized diffraction-radiation semi-analytical method of analysis that is suited for the type of bodies under consideration. According to the analysis method used, matched axisymmetric eigenfunction expansions of the velocity potentials in properly defined fluid regions around the body are introduced to solve the respective diffraction and radiation problems and to calculate the floats’ hydrodynamic characteristics in the frequency domain (Mavrakos et al. 2004, 2005). Based on these characteristics, the retardation forcing terms are calculated, which account for the memory effects of the motion. In this procedure, the coupling terms between the different modes of motion are properly formulated and taken into account (Cummins, 1962; Faltinsen, 1990). The floating WEC is connected to an underwater hydraulic cylinder that feeds a hydraulic system with pressurized oil. The performance of the system under the combined excitation of both first- and second order wave loads is here analyzed. To this end, the diffraction forces originated from the second order wave potentials are computed using a semi-analytical formulation which, by extension of the associated first-order solution, is based on matched axisymmetric eigenfunction expansions.


2020 ◽  
Vol 45 (3) ◽  
pp. 269-290 ◽  
Author(s):  
Sergio Levario-Medina ◽  
Gabriel Valencia-Ortega ◽  
Marco Antonio Barranco-Jiménez

AbstractThe fundamental issue in the energetic performance of power plants, working both as traditional fuel engines and as combined-cycle turbines (gas-steam), lies in quantifying the internal irreversibilities which are associated with the working substance operating in cycles. The purpose of several irreversible energy converter models is to find objective thermodynamic functions that determine operation modes for real thermal engines and at the same time study the trade-off between energy losses per cycle and the useful energy. As those objective functions, we focus our attention on a generalization of the so-called ecological function in terms of an ϵ parameter that depends on the particular heat transfer law used in the irreversible heat engine model. In this work, we mathematically describe the configuration space of an irreversible Curzon–Ahlborn type model. The above allows to determine the optimal relations between the model parameters so that a power plant operates in physically accessible regions, taking into account internal irreversibilities, introduced in two different ways (additively and multiplicatively). In addition, we establish the conditions that the ϵ parameter must fulfill for the energy converter to work in an optimal region between maximum power output and maximum efficiency points.


Sign in / Sign up

Export Citation Format

Share Document