Convergence and error estimation of homotopy analysis method for some type of nonlinear and linear integral equations

2015 ◽  
Vol 23 (4) ◽  
Author(s):  
Edyta Hetmaniok ◽  
Iwona Nowak ◽  
Damian Słota ◽  
Roman Wituła

AbstractIn this paper an application of the homotopy analysis method for some type of nonlinear and linear integral equations of the second kind is presented. A special case of considered equation is the Volterra- Fredholm integral equation. In homotopy analysis method a series is created. It has shown that if the series is convergent, its sum is the solution of the considered equation. It has been also shown that under proper assumptions the considered equation possesses a unique solution and the series obtained in homotopy analysis method is convergent. The error of the approximate solution was estimated. This approximate solution is obtained when we limit to the partial sum of the series.Application of the method is illustrated with examples.

2021 ◽  
Vol 54 (1) ◽  
pp. 11-24
Author(s):  
Atanaska Georgieva

Abstract The purpose of the paper is to find an approximate solution of the two-dimensional nonlinear fuzzy Volterra integral equation, as homotopy analysis method (HAM) is applied. Studied equation is converted to a nonlinear system of Volterra integral equations in a crisp case. Using HAM we find approximate solution of this system and hence obtain an approximation for the fuzzy solution of the nonlinear fuzzy Volterra integral equation. The convergence of the proposed method is proved. An error estimate between the exact and the approximate solution is found. The validity and applicability of the HAM are illustrated by a numerical example.


2020 ◽  
Vol 4 (1) ◽  
pp. 9
Author(s):  
Atanaska Georgieva ◽  
Snezhana Hristova

The main goal of the paper is to present an approximate method for solving of a two-dimensional nonlinear Volterra-Fredholm fuzzy integral equation (2D-NVFFIE). It is applied the homotopy analysis method (HAM). The studied equation is converted to a nonlinear system of Volterra-Fredholm integral equations in a crisp case. Approximate solutions of this system are obtained by the help with HAM and hence an approximation for the fuzzy solution of the nonlinear Volterra-Fredholm fuzzy integral equation is presented. The convergence of the proposed method is proved and the error estimate between the exact and the approximate solution is obtained. The validity and applicability of the proposed method is illustrated on a numerical example.


2016 ◽  
Vol 21 (3) ◽  
pp. 350-370 ◽  
Author(s):  
Rafal Brociek ◽  
Edyta Hetmaniok ◽  
Jaros law Matlak ◽  
Damian Slota

In this paper we indicate some applications of homotopy analysis method for solving the systems of linear and nonlinear integral equations. The method is based on the concept of creating function series. If the series converges, its sum is the solution of this system of equations. The paper presents conditions to ensure the convergence of this series and estimation of the error of approximate solution obtained when the partial sum of the series is used. Application of the method will be illustrated by examples.


Author(s):  
Ahmed A. Hamoud ◽  
Ali Dhurgham Azeez ◽  
Kirtiwant P. Ghadle

<div>This paper mainly focuses on the recent advances in the some approximated methods for solving fuzzy Volterra-Fredholm integral equations, namely, Adomian decomposition method, variational iteration method and homotopy analysis method. We converted fuzzy Volterra-Fredholm integral equation to a system of Volterra-Fredholm integral equation in crisp case. The approximated methods using to find the approximate solutions of this system and hence obtain an approximation for the fuzzy solution of the fuzzy Volterra-Fredholm integral equation. To assess the accuracy of each method, algorithms with Mathematica 6 according is used. Also, some numerical examples are included to demonstrate the validity and applicability</div><div>of the proposed techniques.</div>This paper mainly focuses on the recent advances in the some approximated methods for solvingfuzzy Volterra-Fredholm integral equations, namely, Adomian decomposition method, variational iterationmethod and homotopy analysis method. We converted fuzzy Volterra-Fredholm integral equation to asystem of Volterra-Fredholm integral equation in crisp case. The approximated methods using to find theapproximate solutions of this system and hence obtain an approximation for the fuzzy solution of the fuzzyVolterra-Fredholm integral equation. To assess the accuracy of each method, algorithms with Mathematica 6according is used. Also, some numerical examples are included to demonstrate the validity and applicabilityof the proposed techniques.


1969 ◽  
Vol 16 (3) ◽  
pp. 185-194 ◽  
Author(s):  
V. Hutson

Consider the Fredholm equation of the second kindwhereand Jv is the Bessel function of the first kind. Here ka(t) and h(x) are given, the unknown function is f(x), and the solution is required for large values of the real parameter a. Under reasonable conditions the solution of (1.1) is given by its Neumann series (a set of sufficient conditions on ka(t) for the convergence of this series is given in Section 4, Lemma 2). However, in many applications the convergence of the series becomes too slow as a→∞ for any useful results to be obtained from it, and it may even happen that f(x)→∞ as a→∞. It is the aim of the present investigation to consider this case, and to show how under fairly general conditions on ka(t) an approximate solution may be obtained for large a, the approximation being valid in the norm of L2(0, 1). The exact conditions on ka(t) and the main result are given in Section 4. Roughly, it is required that 1 -ka(at) should behave like tp(p>0) as t→0. For example, ka(at) might be exp ⌈-(t/ap)⌉.


2014 ◽  
Vol 62 (3) ◽  
pp. 413-421 ◽  
Author(s):  
E. Hetmaniok ◽  
D. Słota ◽  
T. Trawiński ◽  
R. Wituła

Abstract In this paper an application of the homotopy perturbation method for solving the general linear integral equations of the second kind is discussed. It is shown that under proper assumptions the considered equation possesses a unique solution and the series obtained in the homotopy perturbation method is convergent. The error of approximate solution, received by taking only the partial sum of the series, is also estimated. Moreover, there is presented an example of applying the method for approximate solution of an equation which has a practical application for charge calculation in supply circuit of the flash lamps used in cameras.


Sign in / Sign up

Export Citation Format

Share Document