On Diophantine equations involving Lucas sequences

2019 ◽  
Vol 17 (1) ◽  
pp. 942-946 ◽  
Author(s):  
Pavel Trojovský

Abstract In this paper, we shall study the Diophantine equation un = R(m)P(m)Q(m), where un is a Lucas sequence and R, P and Q are polynomials (under weak assumptions).

2015 ◽  
Vol 11 (04) ◽  
pp. 1259-1274 ◽  
Author(s):  
Jhon J. Bravo ◽  
Pranabesh Das ◽  
Sergio Guzmán ◽  
Shanta Laishram

In this paper, we consider the usual Pell and Pell–Lucas sequences. The Pell sequence [Formula: see text] is given by the recurrence un = 2un-1 + un-2 with initial condition u0 = 0, u1 = 1 and its associated Pell–Lucas sequence [Formula: see text] is given by the recurrence vn = 2vn-1 + vn-2 with initial condition v0 = 2, v1 = 2. Let n, d, k, y, m be positive integers with m ≥ 2, y ≥ 2 and gcd (n, d) = 1. We prove that the only solutions of the Diophantine equation unun+d⋯un+(k-1)d = ym are given by u7 = 132 and u1u7 = 132 and the equation vnvn+d⋯vn+(k-1)d = ym has no solution. In fact, we prove a more general result.


2015 ◽  
Vol 3 (2) ◽  
Author(s):  
Jayashree Nair ◽  
T. Padma

This paper describes an authentication scheme that uses Diophantine equations based generation of the secret locations to embed the authentication and recovery watermark in the DWT sub-bands. The security lies in the difficulty of finding a solution to the Diophantine equation. The scheme uses the content invariant features of the image as a self-authenticating watermark and a quantized down sampled approximation of the original image as a recovery watermark for visual authentication, both embedded securely using secret locations generated from solution of the Diophantine equations formed from the PQ sequences. The scheme is mildly robust to Jpeg compression and highly robust to Jpeg2000 compression. The scheme also ensures highly imperceptible watermarked images as the spatio –frequency properties of DWT are utilized to embed the dual watermarks.


Author(s):  
Hemar Godinho ◽  
Victor G. L. Neumann

In this paper, we consider the Diophantine equation in the title, where [Formula: see text] are distinct odd prime numbers and [Formula: see text] are natural numbers. We present many results given conditions for the existence of integers solutions for this equation, according to the values of [Formula: see text] and [Formula: see text]. Our methods are elementary in nature and are based upon the study of the primitive divisors of certain Lucas sequences as well as the factorization of certain polynomials.


2021 ◽  
Vol 29 (1) ◽  
pp. 17-36
Author(s):  
Dorin Andrica ◽  
Ovidiu Bagdasar ◽  
George Cătălin Ţurcaş

Abstract In this paper we introduce the functions which count the number of generalized Lucas and Pell-Lucas sequence terms not exceeding a given value x and, under certain conditions, we derive exact formulae (Theorems 3 and 4) and establish asymptotic limits for them (Theorem 6). We formulate necessary and sufficient arithmetic conditions which can identify the terms of a-Fibonacci and a-Lucas sequences. Finally, using a deep theorem of Siegel, we show that the aforementioned sequences contain only finitely many perfect powers. During the process we also discover some novel integer sequences.


2018 ◽  
Vol 36 (3) ◽  
pp. 173-192
Author(s):  
Ahmet Tekcan ◽  
Seyma Kutlu

Let $k\geq 1$ be an integer and let $P=k+2,Q=k$ and $D=k^{2}+4$. In this paper, we derived some algebraic properties of quadratic ideals $I_{\gamma}$ and indefinite quadratic forms $F_{\gamma }$ for quadratic irrationals $\gamma$, and then we determine the set of all integer solutions of the Diophantine equation $F_{\gamma }^{\pm k}(x,y)=\pm Q$.


Mathematics ◽  
2020 ◽  
Vol 8 (7) ◽  
pp. 1047
Author(s):  
Pavel Trojovský ◽  
Štěpán Hubálovský

Let k ≥ 1 be an integer and denote ( F k , n ) n as the k-Fibonacci sequence whose terms satisfy the recurrence relation F k , n = k F k , n − 1 + F k , n − 2 , with initial conditions F k , 0 = 0 and F k , 1 = 1 . In the same way, the k-Lucas sequence ( L k , n ) n is defined by satisfying the same recursive relation with initial values L k , 0 = 2 and L k , 1 = k . The sequences ( F k , n ) n ≥ 0 and ( L k , n ) n ≥ 0 were introduced by Falcon and Plaza, who derived many of their properties. In particular, they proved that F k , n 2 + F k , n + 1 2 = F k , 2 n + 1 and F k , n + 1 2 − F k , n − 1 2 = k F k , 2 n , for all k ≥ 1 and n ≥ 0 . In this paper, we shall prove that if k > 1 and F k , n s + F k , n + 1 s ∈ ( F k , m ) m ≥ 1 for infinitely many positive integers n, then s = 2 . Similarly, that if F k , n + 1 s − F k , n − 1 s ∈ ( k F k , m ) m ≥ 1 holds for infinitely many positive integers n, then s = 1 or s = 2 . This generalizes a Marques and Togbé result related to the case k = 1 . Furthermore, we shall solve the Diophantine equations F k , n = L k , m , F k , n = F n , k and L k , n = L n , k .


1991 ◽  
Vol 123 ◽  
pp. 141-151 ◽  
Author(s):  
Franz Halter-Koch

The binary quadratic diophantine equationis of interest in the class number problem for real quadratic number fields and was studied in recent years by several authors (see [4], [5], [2] and the literature cited there).


2014 ◽  
Vol 91 (1) ◽  
pp. 11-18
Author(s):  
NOBUHIRO TERAI

AbstractLet $a$ and $m$ be relatively prime positive integers with $a>1$ and $m>2$. Let ${\it\phi}(m)$ be Euler’s totient function. The quotient $E_{m}(a)=(a^{{\it\phi}(m)}-1)/m$ is called the Euler quotient of $m$ with base $a$. By Euler’s theorem, $E_{m}(a)$ is an integer. In this paper, we consider the Diophantine equation $E_{m}(a)=x^{l}$ in integers $x>1,l>1$. We conjecture that this equation has exactly five solutions $(a,m,x,l)$ except for $(l,m)=(2,3),(2,6)$, and show that if the equation has solutions, then $m=p^{s}$ or $m=2p^{s}$ with $p$ an odd prime and $s\geq 1$.


Author(s):  
Apoloniusz Tyszka

Let f ( 1 ) = 1 , and let f ( n + 1 ) = 2 2 f ( n ) for every positive integer n. We consider the following hypothesis: if a system S ⊆ {xi · xj = xk : i, j, k ∈ {1, . . . , n}} ∪ {xi + 1 = xk : i, k ∈{1, . . . , n}} has only finitely many solutions in non-negative integers x1, . . . , xn, then each such solution (x1, . . . , xn) satisfies x1, . . . , xn ≤ f (2n). We prove:   (1) the hypothesisimplies that there exists an algorithm which takes as input a Diophantine equation, returns an integer, and this integer is greater than the heights of integer (non-negative integer, positive integer, rational) solutions, if the solution set is finite; (2) the hypothesis implies that there exists an algorithm for listing the Diophantine equations with infinitely many solutions in non-negative integers; (3) the hypothesis implies that the question whether or not a given Diophantine equation has only finitely many rational solutions is decidable by a single query to an oracle that decides whether or not a given Diophantine equation has a rational solution; (4) the hypothesis implies that the question whether or not a given Diophantine equation has only finitely many integer solutions is decidable by a single query to an oracle that decides whether or not a given Diophantine equation has an integer solution; (5) the hypothesis implies that if a set M ⊆ N has a finite-fold Diophantine representation, then M is computable.


Sign in / Sign up

Export Citation Format

Share Document