scholarly journals Some Diophantine Problems Related to k-Fibonacci Numbers

Mathematics ◽  
2020 ◽  
Vol 8 (7) ◽  
pp. 1047
Author(s):  
Pavel Trojovský ◽  
Štěpán Hubálovský

Let k ≥ 1 be an integer and denote ( F k , n ) n as the k-Fibonacci sequence whose terms satisfy the recurrence relation F k , n = k F k , n − 1 + F k , n − 2 , with initial conditions F k , 0 = 0 and F k , 1 = 1 . In the same way, the k-Lucas sequence ( L k , n ) n is defined by satisfying the same recursive relation with initial values L k , 0 = 2 and L k , 1 = k . The sequences ( F k , n ) n ≥ 0 and ( L k , n ) n ≥ 0 were introduced by Falcon and Plaza, who derived many of their properties. In particular, they proved that F k , n 2 + F k , n + 1 2 = F k , 2 n + 1 and F k , n + 1 2 − F k , n − 1 2 = k F k , 2 n , for all k ≥ 1 and n ≥ 0 . In this paper, we shall prove that if k > 1 and F k , n s + F k , n + 1 s ∈ ( F k , m ) m ≥ 1 for infinitely many positive integers n, then s = 2 . Similarly, that if F k , n + 1 s − F k , n − 1 s ∈ ( k F k , m ) m ≥ 1 holds for infinitely many positive integers n, then s = 1 or s = 2 . This generalizes a Marques and Togbé result related to the case k = 1 . Furthermore, we shall solve the Diophantine equations F k , n = L k , m , F k , n = F n , k and L k , n = L n , k .

2016 ◽  
Vol 67 (1) ◽  
pp. 41-46
Author(s):  
Pavel Trojovský

Abstract Let k ≥ 1 and denote (Fk,n)n≥0, the k-Fibonacci sequence whose terms satisfy the recurrence relation Fk,n = kFk,n−1 +Fk,n−2, with initial conditions Fk,0 = 0 and Fk,1 = 1. In the same way, the k-Lucas sequence (Lk,n)n≥0 is defined by satisfying the same recurrence relation with initial values Lk,0 = 2 and Lk,1 = k. These sequences were introduced by Falcon and Plaza, who showed many of their properties, too. In particular, they proved that Fk,n+1 + Fk,n−1 = Lk,n, for all k ≥ 1 and n ≥ 0. In this paper, we shall prove that if k ≥ 1 and $F_{k,n + 1}^s + F_{k,n - 1}^s \in \left( {L_{k,m} } \right)_{m \ge 1} $ for infinitely many positive integers n, then s =1.


2016 ◽  
Vol 5 (1) ◽  
pp. 29-36
Author(s):  
Sujata Swain ◽  
Chidananda Pratihary ◽  
Prasanta Kumar Ray

It is well known that, a recursive relation for the sequence  is an equation that relates  to certain of its preceding terms . Initial conditions for the sequence  are explicitly given values for a finite number of the terms of the sequence. The recurrence relation is useful in certain counting problems like Fibonacci numbers, Lucas numbers, balancing numbers, Lucas-balancing numbers etc. In this study, we use the recurrence relations for both balancing and Lucas-balancing numbers and examine their application to cryptography.


Author(s):  
Musraini M Musraini M ◽  
Rustam Efendi ◽  
Rolan Pane ◽  
Endang Lily

Barisan Fibonacci dan Lucas telah digeneralisasi dalam banyak cara, beberapa dengan mempertahankan kondisi awal, dan lainnya dengan mempertahankan relasi rekurensi. Makalah ini menyajikan sebuah generalisasi baru barisan Fibonacci-Lucas yang didefinisikan oleh relasi rekurensi B_n=B_(n-1)+B_(n-2),n≥2 , B_0=2b,B_1=s dengan b dan s bilangan bulat  tak negatif. Selanjutnya, beberapa identitas dihasilkan dan diturunkan menggunakan formula Binet dan metode sederhana lainnya. Juga dibahas beberapa identitas dalam bentuk determinan.   The Fibonacci and Lucas sequence has been generalized in many ways, some by preserving the initial conditions, and others by preserving the recurrence relation. In this paper, a new generalization of Fibonacci-Lucas sequence is introduced and defined by the recurrence relation B_n=B_(n-1)+B_(n-2),n≥2, with ,  B_0=2b,B_1=s                          where b and s are non negative integers. Further, some identities are generated and derived by Binet’s formula and other simple methods. Also some determinant identities are discussed.


2003 ◽  
Vol 87 (509) ◽  
pp. 203-208
Author(s):  
R. P. Burn

Those who enjoy number patterns will no doubt have had many hours of pleasure exploring the Fibonacci sequence to various moduli, and especially in recognising the regularity with which various prime factors occur in thesequence (see [1]). Gill Hatch’s question is whether the occurrence of prime factors in generalised Fibonacci sequences is similarly predictable. Generalised Fibonacci sequences (Gn), abbreviated to GF sequences, are sequences of positive integers derived from the recurrence relation tn + 2 = tn + 1 + tn. In the case of the Fibonacci sequence (Fn), the first two terms are 1 and 1.


Author(s):  
Saida Lagheliel ◽  
Abdelhakim Chillali ◽  
Ahmed Ait Mokhtar

In this paper, we present a new encryption scheme using generalization k-Fibonacci-like sequence, we code the points of an elliptic curve with the terms of a sequence of k-Fibonacci-like using of Fibonacci sequence and we call it as k-Fibonacci like sequence [Formula: see text] defined by the recurrence relation: [Formula: see text] and we present some relation among k-Fibonacci like sequence, k-Fibonacci sequence and k-Lucas sequence. After that, we give application of elliptic curves in cryptography using k-Fibonacci like sequence.


2013 ◽  
Vol 97 (540) ◽  
pp. 461-464
Author(s):  
Jawad Sadek ◽  
Russell Euler

Although it is an old one, the fascinating world of Fibonnaci numbers and Lucas numbers continues to provide rich areas of investigation for professional and amateur mathematicians. We revisit divisibility properties for t0hose numbers along with the closely related Pell numbers and Pell-Lucas numbers by providing a unified approach for our investigation.For non-negative integers n, the recurrence relation defined bywith initial conditionscan be used to study the Pell (Pn), Fibonacci (Fn), Lucas (Ln), and Pell-Lucas (Qn) numbers in a unified way. In particular, if a = 0, b = 1 and c = 1, then (1) defines the Fibonacci numbers xn = Fn. If a = 2, b = 1 and c = 1, then xn = Ln. If a = 0, b = 1 and c = 2, then xn = Pn. If a =b = c = 2, then xn = Qn [1].


2018 ◽  
Vol 99 (1) ◽  
pp. 34-41
Author(s):  
ZHONGFENG ZHANG ◽  
ALAIN TOGBÉ

In this paper, we consider the Diophantine equations $$\begin{eqnarray}\displaystyle F_{n}^{q}\pm F_{m}^{q}=y^{p} & & \displaystyle \nonumber\end{eqnarray}$$ with positive integers $q,p\geq 2$ and $\gcd (F_{n},F_{m})=1$, where $F_{k}$ is a Fibonacci number. We obtain results for $q=2$ or $q$ an odd prime with $q\equiv 3\;(\text{mod}\;4),3<q<1087$, and complete solutions for $q=3$.


Mathematics ◽  
2021 ◽  
Vol 9 (6) ◽  
pp. 682
Author(s):  
Petr Coufal ◽  
Pavel Trojovský

For any integer k≥2, the sequence of the k-generalized Fibonacci numbers (or k-bonacci numbers) is defined by the k initial values F−(k−2)(k)=⋯=F0(k)=0 and F1(k)=1 and such that each term afterwards is the sum of the k preceding ones. In this paper, we search for repdigits (i.e., a number whose decimal expansion is of the form aa…a, with a∈[1,9]) in the sequence (Fn(k)Fn(k+m))n, for m∈[1,9]. This result generalizes a recent work of Bednařík and Trojovská (the case in which (k,m)=(2,1)). Our main tools are the transcendental method (for Diophantine equations) together with the theory of continued fractions (reduction method).


Mathematics ◽  
2020 ◽  
Vol 8 (1) ◽  
pp. 124 ◽  
Author(s):  
Eva Trojovská

Let ( F n ) n ≥ 0 be the sequence of the Fibonacci numbers. The order (or rank) of appearance z ( n ) of a positive integer n is defined as the smallest positive integer m such that n divides F m . In 1975, Sallé proved that z ( n ) ≤ 2 n , for all positive integers n. In this paper, we shall solve the Diophantine equation z ( n ) = ( 2 − 1 / k ) n for positive integers n and k.


Mathematics ◽  
2019 ◽  
Vol 7 (11) ◽  
pp. 1073 ◽  
Author(s):  
Pavel Trojovský

Let F n be the nth Fibonacci number. Order of appearance z ( n ) of a natural number n is defined as smallest natural number k, such that n divides F k . In 1930, Lehmer proved that all solutions of equation z ( n ) = n ± 1 are prime numbers. In this paper, we solve equation z ( n ) = n + ℓ for | ℓ | ∈ { 1 , … , 9 } . Our method is based on the p-adic valuation of Fibonacci numbers.


Sign in / Sign up

Export Citation Format

Share Document