scholarly journals The molecular characterization of anisotropic Herz-type Hardy spaces with two variable exponents

2020 ◽  
Vol 18 (1) ◽  
pp. 434-447
Author(s):  
Qingdong Guo ◽  
Wenhua Wang

Abstract In this article, the authors establish the characterizations of a class of anisotropic Herz-type Hardy spaces with two variable exponents associated with a non-isotropic dilation on {{\mathbb{R}}}^{n} in terms of molecular decompositions. Using the molecular decompositions, the authors obtain the boundedness of the central δ-Calderón-Zygmund operators on the anisotropic Herz-type Hardy space with two variable exponents.

2014 ◽  
Vol 2014 ◽  
pp. 1-6 ◽  
Author(s):  
Jizheng Huang ◽  
Yu Liu

We give a molecular characterization of the Hardy space associated with twisted convolution. As an application, we prove the boundedness of the local Riesz transform on the Hardy space.


2015 ◽  
Vol 67 (5) ◽  
pp. 1161-1200 ◽  
Author(s):  
Junqiang Zhang ◽  
Jun Cao ◽  
Renjin Jiang ◽  
Dachun Yang

AbstractLet w be either in the Muckenhoupt class of A2(ℝn) weights or in the class of QC(ℝn) weights, and let be the degenerate elliptic operator on the Euclidean space ℝn, n ≥ 2. In this article, the authors establish the non-tangential maximal function characterization of the Hardy space associated with , and when with , the authors prove that the associated Riesz transform is bounded from to the weighted classical Hardy space .


2016 ◽  
Vol 32 (11) ◽  
pp. 1391-1414 ◽  
Author(s):  
Bao De Li ◽  
Xing Ya Fan ◽  
Zun Wei Fu ◽  
Da Chun Yang

2001 ◽  
Vol 44 (2) ◽  
pp. 201-211 ◽  
Author(s):  
Xingmin Li ◽  
Lizhong Peng

2013 ◽  
Vol 2013 ◽  
pp. 1-5 ◽  
Author(s):  
Liankuo Zhao

This paper gives a unified characterization of Fredholm weighted composition operator on a class of weighted Hardy spaces.


2014 ◽  
Vol 2014 ◽  
pp. 1-19 ◽  
Author(s):  
Baode Li ◽  
Dachun Yang ◽  
Wen Yuan

Letφ:ℝn×[0,∞)→[0,∞)be a Musielak-Orlicz function andAan expansive dilation. In this paper, the authors introduce the anisotropic Hardy space of Musielak-Orlicz type,HAφ(ℝn), via the grand maximal function. The authors then obtain some real-variable characterizations ofHAφ(ℝn)in terms of the radial, the nontangential, and the tangential maximal functions, which generalize the known results on the anisotropic Hardy spaceHAp(ℝn)withp∈(0,1]and are new even for its weighted variant. Finally, the authors characterize these spaces by anisotropic atomic decompositions. The authors also obtain the finite atomic decomposition characterization ofHAφ(ℝn), and, as an application, the authors prove that, for a given admissible triplet(φ,q,s), ifTis a sublinear operator and maps all(φ,q,s)-atoms withq<∞(or all continuous(φ,q,s)-atoms withq=∞) into uniformly bounded elements of some quasi-Banach spacesℬ, thenTuniquely extends to a bounded sublinear operator fromHAφ(ℝn)toℬ. These results are new even for anisotropic Orlicz-Hardy spaces onℝn.


2021 ◽  
Vol 166 ◽  
pp. 102939
Author(s):  
Minfeng Liao ◽  
Jinxia Li ◽  
Bo Li ◽  
Baode Li

Mathematics ◽  
2021 ◽  
Vol 9 (18) ◽  
pp. 2216
Author(s):  
Jun Liu ◽  
Long Huang ◽  
Chenlong Yue

Let p→∈(0,∞)n be an exponent vector and A be a general expansive matrix on Rn. Let HAp→(Rn) be the anisotropic mixed-norm Hardy spaces associated with A defined via the non-tangential grand maximal function. In this article, using the known atomic characterization of HAp→(Rn), the authors characterize this Hardy space via molecules with the best possible known decay. As an application, the authors establish a criterion on the boundedness of linear operators from HAp→(Rn) to itself, which is used to explore the boundedness of anisotropic Calderón–Zygmund operators on HAp→(Rn). In addition, the boundedness of anisotropic Calderón–Zygmund operators from HAp→(Rn) to the mixed-norm Lebesgue space Lp→(Rn) is also presented. The obtained boundedness of these operators positively answers a question mentioned by Cleanthous et al. All of these results are new, even for isotropic mixed-norm Hardy spaces on Rn.


2019 ◽  
Vol 31 (6) ◽  
pp. 1467-1488 ◽  
Author(s):  
Wei Ding ◽  
Guozhen Lu ◽  
Yueping Zhu

AbstractIn our recent work [W. Ding, G. Lu and Y. Zhu, Multi-parameter local Hardy spaces, Nonlinear Anal. 184 2019, 352–380], the multi-parameter local Hardy space {h^{p}(\mathbb{R}^{n_{1}}\times\mathbb{R}^{n_{2}})} has been introduced by using the continuous inhomogeneous Littlewood–Paley–Stein square functions. In this paper, we will first establish the new discrete multi-parameter local Calderón’s identity. Based on this identity, we will define the local multi-parameter Hardy space {h_{\mathrm{dis}}^{p}(\mathbb{R}^{n_{1}}\times\mathbb{R}^{n_{2}})} by using the discrete inhomogeneous Littlewood–Paley–Stein square functions. Then we prove that these two multi-parameter local Hardy spaces are actually the same. Moreover, the norms of the multi-parameter local Hardy spaces under the continuous and discrete Littlewood–Paley–Stein square functions are equivalent. This discrete version of the multi-parameter local Hardy space is also critical in establishing the duality theory of the multi-parameter local Hardy spaces.


2019 ◽  
Vol 63 (2) ◽  
pp. 304-317 ◽  
Author(s):  
Jian Tan

AbstractLet$p(\cdot ):\mathbb{R}^{n}\rightarrow (0,\infty )$be a variable exponent function satisfying the globally log-Hölder continuous condition. In this paper, we obtain the boundedness of paraproduct operators$\unicode[STIX]{x1D70B}_{b}$on variable Hardy spaces$H^{p(\cdot )}(\mathbb{R}^{n})$, where$b\in \text{BMO}(\mathbb{R}^{n})$. As an application, we show that non-convolution type Calderón–Zygmund operators$T$are bounded on$H^{p(\cdot )}(\mathbb{R}^{n})$if and only if$T^{\ast }1=0$, where$\frac{n}{n+\unicode[STIX]{x1D716}}<\text{ess inf}_{x\in \mathbb{R}^{n}}p\leqslant \text{ess sup}_{x\in \mathbb{R}^{n}}p\leqslant 1$and$\unicode[STIX]{x1D716}$is the regular exponent of kernel of$T$. Our approach relies on the discrete version of Calderón’s reproducing formula, discrete Littlewood–Paley–Stein theory, almost orthogonal estimates, and variable exponents analysis techniques. These results still hold for variable Hardy space on spaces of homogeneous type by using our methods.


Sign in / Sign up

Export Citation Format

Share Document