scholarly journals Molecular Characterizations of Anisotropic Mixed-Norm Hardy Spaces and Their Applications

Mathematics ◽  
2021 ◽  
Vol 9 (18) ◽  
pp. 2216
Author(s):  
Jun Liu ◽  
Long Huang ◽  
Chenlong Yue

Let p→∈(0,∞)n be an exponent vector and A be a general expansive matrix on Rn. Let HAp→(Rn) be the anisotropic mixed-norm Hardy spaces associated with A defined via the non-tangential grand maximal function. In this article, using the known atomic characterization of HAp→(Rn), the authors characterize this Hardy space via molecules with the best possible known decay. As an application, the authors establish a criterion on the boundedness of linear operators from HAp→(Rn) to itself, which is used to explore the boundedness of anisotropic Calderón–Zygmund operators on HAp→(Rn). In addition, the boundedness of anisotropic Calderón–Zygmund operators from HAp→(Rn) to the mixed-norm Lebesgue space Lp→(Rn) is also presented. The obtained boundedness of these operators positively answers a question mentioned by Cleanthous et al. All of these results are new, even for isotropic mixed-norm Hardy spaces on Rn.

2015 ◽  
Vol 67 (5) ◽  
pp. 1161-1200 ◽  
Author(s):  
Junqiang Zhang ◽  
Jun Cao ◽  
Renjin Jiang ◽  
Dachun Yang

AbstractLet w be either in the Muckenhoupt class of A2(ℝn) weights or in the class of QC(ℝn) weights, and let be the degenerate elliptic operator on the Euclidean space ℝn, n ≥ 2. In this article, the authors establish the non-tangential maximal function characterization of the Hardy space associated with , and when with , the authors prove that the associated Riesz transform is bounded from to the weighted classical Hardy space .


2013 ◽  
Vol 15 (06) ◽  
pp. 1350029 ◽  
Author(s):  
SHAOXIONG HOU ◽  
DACHUN YANG ◽  
SIBEI YANG

Let φ : ℝn× [0,∞) → [0,∞) be a growth function such that φ(x, ⋅) is nondecreasing, φ(x, 0) = 0, φ(x, t) > 0 when t > 0, limt→∞φ(x, t) = ∞, and φ(⋅, t) is a Muckenhoupt A∞(ℝn) weight uniformly in t. In this paper, the authors establish the Lusin area function and the molecular characterizations of the Musielak–Orlicz Hardy space Hφ(ℝn) introduced by Luong Dang Ky via the grand maximal function. As an application, the authors obtain the φ-Carleson measure characterization of the Musielak–Orlicz BMO-type space BMOφ(ℝn), which was proved to be the dual space of Hφ(ℝn) by Luong Dang Ky.


2010 ◽  
Vol 12 (01) ◽  
pp. 71-84 ◽  
Author(s):  
JIZHENG HUANG

Let Ω be a strongly Lipschitz domain of ℝn and define Hardy spaces on Ω by non-tangential maximal function. In this paper, we will give a characterization of the Hardy spaces on Ω by Littlwood–Paley–Stein function associated to L, where L is an elliptic second-order divergence operator. In order to get our result, we also consider the Lusin area integral characterization of the Hardy spaces on Ω.


2018 ◽  
Vol 237 ◽  
pp. 39-78
Author(s):  
BO LI ◽  
RUIRUI SUN ◽  
MINFENG LIAO ◽  
BAODE LI

Let $A$ be an expansive dilation on $\mathbb{R}^{n}$ and $\unicode[STIX]{x1D711}:\mathbb{R}^{n}\times [0,\infty )\rightarrow [0,\infty )$ an anisotropic growth function. In this article, the authors introduce the anisotropic weak Musielak–Orlicz Hardy space $\mathit{WH}_{A}^{\unicode[STIX]{x1D711}}(\mathbb{R}^{n})$ via the nontangential grand maximal function and then obtain its Littlewood–Paley characterizations in terms of the anisotropic Lusin-area function, $g$-function or $g_{\unicode[STIX]{x1D706}}^{\ast }$-function, respectively. All these characterizations for anisotropic weak Hardy spaces $\mathit{WH}_{A}^{p}(\mathbb{R}^{n})$ (namely, $\unicode[STIX]{x1D711}(x,t):=t^{p}$ for all $t\in [0,\infty )$ and $x\in \mathbb{R}^{n}$ with $p\in (0,1]$) are new. Moreover, the range of $\unicode[STIX]{x1D706}$ in the anisotropic $g_{\unicode[STIX]{x1D706}}^{\ast }$-function characterization of $\mathit{WH}_{A}^{\unicode[STIX]{x1D711}}(\mathbb{R}^{n})$ coincides with the best known range of the $g_{\unicode[STIX]{x1D706}}^{\ast }$-function characterization of classical Hardy space $H^{p}(\mathbb{R}^{n})$ or its weighted variants, where $p\in (0,1]$.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Giorgi Tutberidze

Abstract In this paper, we find a necessary and sufficient condition for the modulus of continuity for which subsequences of Fejér means with respect to Vilenkin systems are bounded from the Hardy space H p {H_{p}} to the Lebesgue space L p {L_{p}} for all 0 < p < 1 2 {0<p<\frac{1}{2}} .


2014 ◽  
Vol 2014 ◽  
pp. 1-8
Author(s):  
Yue Hu ◽  
Yueshan Wang

We prove that, under the conditionΩ∈Lipα, Marcinkiewicz integralμΩis bounded from weighted weak Hardy spaceWHwpRnto weighted weak Lebesgue spaceWLwpRnformaxn/n+1/2,n/n+α<p≤1, wherewbelongs to the Muckenhoupt weight class. We also give weaker smoothness condition assumed on Ω to imply the boundedness ofμΩfromWHw1ℝntoWLw1Rn.


2020 ◽  
Vol 71 (1) ◽  
pp. 295-320
Author(s):  
Shuichi Sato

Abstract We establish a characterization of the Hardy spaces on the homogeneous groups in terms of the Littlewood–Paley functions. The proof is based on vector-valued inequalities shown by applying the Peetre maximal function.


2013 ◽  
Vol 2013 ◽  
pp. 1-5 ◽  
Author(s):  
Liankuo Zhao

This paper gives a unified characterization of Fredholm weighted composition operator on a class of weighted Hardy spaces.


2014 ◽  
Vol 2014 ◽  
pp. 1-19 ◽  
Author(s):  
Baode Li ◽  
Dachun Yang ◽  
Wen Yuan

Letφ:ℝn×[0,∞)→[0,∞)be a Musielak-Orlicz function andAan expansive dilation. In this paper, the authors introduce the anisotropic Hardy space of Musielak-Orlicz type,HAφ(ℝn), via the grand maximal function. The authors then obtain some real-variable characterizations ofHAφ(ℝn)in terms of the radial, the nontangential, and the tangential maximal functions, which generalize the known results on the anisotropic Hardy spaceHAp(ℝn)withp∈(0,1]and are new even for its weighted variant. Finally, the authors characterize these spaces by anisotropic atomic decompositions. The authors also obtain the finite atomic decomposition characterization ofHAφ(ℝn), and, as an application, the authors prove that, for a given admissible triplet(φ,q,s), ifTis a sublinear operator and maps all(φ,q,s)-atoms withq<∞(or all continuous(φ,q,s)-atoms withq=∞) into uniformly bounded elements of some quasi-Banach spacesℬ, thenTuniquely extends to a bounded sublinear operator fromHAφ(ℝn)toℬ. These results are new even for anisotropic Orlicz-Hardy spaces onℝn.


2020 ◽  
Vol 18 (1) ◽  
pp. 434-447
Author(s):  
Qingdong Guo ◽  
Wenhua Wang

Abstract In this article, the authors establish the characterizations of a class of anisotropic Herz-type Hardy spaces with two variable exponents associated with a non-isotropic dilation on {{\mathbb{R}}}^{n} in terms of molecular decompositions. Using the molecular decompositions, the authors obtain the boundedness of the central δ-Calderón-Zygmund operators on the anisotropic Herz-type Hardy space with two variable exponents.


Sign in / Sign up

Export Citation Format

Share Document