scholarly journals Long time decay for 3D Navier-Stokes equations in Fourier-Lei-Lin spaces

2021 ◽  
Vol 19 (1) ◽  
pp. 898-908
Author(s):  
Lotfi Jlali

Abstract In this paper, we study the long time decay of global solution to the 3D incompressible Navier-Stokes equations. We prove that if u ∈ C ( R + , X − 1 , σ ( R 3 ) ) u\in {\mathcal{C}}\left({{\mathbb{R}}}^{+},{{\mathcal{X}}}^{-1,\sigma }\left({{\mathbb{R}}}^{3})) is a global solution to the considered equation, where X i , σ ( R 3 ) {{\mathcal{X}}}^{i,\sigma }\left({{\mathbb{R}}}^{3}) is the Fourier-Lei-Lin space with parameters i = − 1 i=-1 and σ ≥ − 1 \sigma \ge -1 , then ‖ u ( t ) ‖ X − 1 , σ \Vert u\left(t){\Vert }_{{{\mathcal{X}}}^{-1,\sigma }} decays to zero as time goes to infinity. The used techniques are based on Fourier analysis.

2014 ◽  
Vol 2014 ◽  
pp. 1-11 ◽  
Author(s):  
Weiliang Xiao ◽  
Jiecheng Chen ◽  
Dashan Fan ◽  
Xuhuan Zhou

We study the Cauchy problem of the fractional Navier-Stokes equations in critical Fourier-Besov spacesFB˙p,q1-2β+3/p′. Some properties of Fourier-Besov spaces have been discussed, and we prove a general global well-posedness result which covers some recent works in classical Navier-Stokes equations. Particularly, our result is suitable for the critical caseβ=1/2. Moreover, we prove the long time decay of the global solutions in Fourier-Besov spaces.


2012 ◽  
Vol 39 (1) ◽  
pp. 23-41 ◽  
Author(s):  
Jolanta Socała ◽  
Wojciech M. Zajączkowski

2011 ◽  
Vol 666 ◽  
pp. 506-520 ◽  
Author(s):  
F. DOMENICHINI

The vortex formation behind an orifice is a widely investigated phenomenon, which has been recently studied in several problems of biological relevance. In the case of a circular opening, several works in the literature have shown the existence of a limiting process for vortex ring formation that leads to the concept of critical formation time. In the different geometric arrangement of a planar flow, which corresponds to an opening with straight edges, it has been recently outlined that such a concept does not apply. This discrepancy opens the question about the presence of limiting conditions when apertures with irregular shape are considered. In this paper, the three-dimensional vortex formation due to the impulsively started flow through slender openings is studied with the numerical solution of the Navier–Stokes equations, at values of the Reynolds number that allow the comparison with previous two-dimensional findings. The analysis of the three-dimensional results reveals the two-dimensional nature of the early vortex formation phase. During an intermediate phase, the flow evolution appears to be driven by the local curvature of the orifice edge, and the time scale of the phenomena exhibits a surprisingly good agreement with those found in axisymmetric problems with the same curvature. The long-time evolution shows the complete development of the three-dimensional vorticity dynamics, which does not allow the definition of further unifying concepts.


Sign in / Sign up

Export Citation Format

Share Document