scholarly journals On pseudorandom functions and asymptotic distributions

2000 ◽  
Vol 6 (3) ◽  
Author(s):  
Katusi Fukuyama ◽  
Tetsuo Tomokuni
Biometrika ◽  
1982 ◽  
Vol 69 (1) ◽  
pp. 29-46 ◽  
Author(s):  
CHRISTOPHER A. FIELD ◽  
FRANK R. HAMPEL

Risks ◽  
2019 ◽  
Vol 7 (2) ◽  
pp. 56 ◽  
Author(s):  
Taras Bodnar ◽  
Arjun K. Gupta ◽  
Valdemar Vitlinskyi ◽  
Taras Zabolotskyy

The beta coefficient plays a crucial role in finance as a risk measure of a portfolio in comparison to the benchmark portfolio. In the paper, we investigate statistical properties of the sample estimator for the beta coefficient. Assuming that both the holding portfolio and the benchmark portfolio consist of the same assets whose returns are multivariate normally distributed, we provide the finite sample and the asymptotic distributions of the sample estimator for the beta coefficient. These findings are used to derive a statistical test for the beta coefficient and to construct a confidence interval for the beta coefficient. Moreover, we show that the sample estimator is an unbiased estimator for the beta coefficient. The theoretical results are implemented in an empirical study.


2020 ◽  
Vol 72 (2) ◽  
pp. 89-110
Author(s):  
Manoj Chacko ◽  
Shiny Mathew

In this article, the estimation of [Formula: see text] is considered when [Formula: see text] and [Formula: see text] are two independent generalized Pareto distributions. The maximum likelihood estimators and Bayes estimators of [Formula: see text] are obtained based on record values. The Asymptotic distributions are also obtained together with the corresponding confidence interval of [Formula: see text]. AMS 2000 subject classification: 90B25


Biometrika ◽  
1994 ◽  
Vol 81 (4) ◽  
pp. 709-720 ◽  
Author(s):  
GAUSS M. CORDEIRO ◽  
DENISE A. BOTTER ◽  
SILVIA L. DE PAULA FERRARI

2021 ◽  
Vol 5 (1) ◽  
pp. 19
Author(s):  
Alexander Kushnir ◽  
Alexander Varypaev

The publication is devoted to studying asymptotic properties of statistical estimates of the distribution parameters u∈Rq of a multidimensional random stationary time series zt∈Rm, t∈ℤ satisfying the strong mixing conditions. We consider estimates u^nδ(z¯n), z¯n=(z1T,…,znT)T∈Rmn that provide in asymptotic n→∞ the maximum values for some objective functions Qn(z¯n;u), which have properties similar to the well-known property of local asymptotic normality. These estimates are constructed by solving the equations δn(z¯n;u)=0, where δn(z¯n;u) are arbitrary functions for which δn(z¯n;u)−gradhQn(z¯n;u+n−1/2h)→0(n→∞) in Pn,u(z¯n)-probability uniformly on u∈U, were U is compact in Rq. In many cases, the estimates u^nδ(z¯n) have the same asymptotic properties as well-known M-estimates defined by equations u^nQ(z¯n)=arg maxu∈UQn(z¯n;u) but often can be much simpler computationally. We consider an algorithmic method for constructing estimates u^nδ(z¯n), which is similar to the accumulation method first proposed by R. Fischer and rigorously developed by L. Le Cam. The main theoretical result of the article is the proof of the theorem, in which conditions of the asymptotic normality of estimates u^nδ(z¯n) are formulated, and the expression is proposed for their matrix of asymptotic mean-square deviations limn→∞nEn,u{(u^δ(z¯n)−u)(u^δ(z¯n)−u)T}.


Sign in / Sign up

Export Citation Format

Share Document