bayes estimators
Recently Published Documents


TOTAL DOCUMENTS

326
(FIVE YEARS 55)

H-INDEX

17
(FIVE YEARS 2)

Author(s):  
Rajesh Singh ◽  
Pritee Singh ◽  
Kailash Kale

Reliability is an essentially important characteristic of software. The reliability of software has been assessed by considering Poisson Type occurrence of software failures and the failure intensity of one parameter say (η_1 ) Rayleigh class. Here, it is assumed that the software contains fixed number of inherent faults say (η_0 ). The scale parameter of Rayleigh density (η_1 ) and fixed number of inherent faults contained in software are the parameters of interest. The failure intensity and mean failure function of this Poisson Type Rayleigh Class (PTRC) Software Reliability Growth Model (SRGM) have been studied. The estimates of above parameters can be obtained by using maximum likelihood method. Bayesian technique has been used to about estimates of η_0 and η_1 if prior knowledge about these parameters is available. The prior knowledge about these parameters is considered in the form of non- informative priors for both the parameters. The proposed Bayes estimators are compared with their corresponding maximum likelihood estimators on the basis of risk efficiencies under squared error loss. The Monte Carlo simulation technique is used for calculating risk efficiencies. It is seen that both the proposed Bayes estimators can be preferred over corresponding MLEs for the proper choice of the values of execution time.


2022 ◽  
Vol 19 (1) ◽  
Author(s):  
Mohd. Arshad ◽  
Qazi J. Azhad

A general family of distributions, namely Kumaraswamy generalized family of (Kw-G) distribution, is considered for estimation of the unknown parameters and reliability function based on record data from Kw-G distribution. The maximum likelihood estimators (MLEs) are derived for unknown parameters and reliability function, along with its confidence intervals. A Bayesian study is carried out under symmetric and asymmetric loss functions in order to find the Bayes estimators for unknown parameters and reliability function. Future record values are predicted using Bayesian approach and non Bayesian approach, based on numerical examples and a monte carlo simulation.


2022 ◽  
Vol 4 ◽  
Author(s):  
Ying-Ying Zhang ◽  
Teng-Zhong Rong ◽  
Man-Man Li

For the normal model with a known mean, the Bayes estimation of the variance parameter under the conjugate prior is studied in Lehmann and Casella (1998) and Mao and Tang (2012). However, they only calculate the Bayes estimator with respect to a conjugate prior under the squared error loss function. Zhang (2017) calculates the Bayes estimator of the variance parameter of the normal model with a known mean with respect to the conjugate prior under Stein’s loss function which penalizes gross overestimation and gross underestimation equally, and the corresponding Posterior Expected Stein’s Loss (PESL). Motivated by their works, we have calculated the Bayes estimators of the variance parameter with respect to the noninformative (Jeffreys’s, reference, and matching) priors under Stein’s loss function, and the corresponding PESLs. Moreover, we have calculated the Bayes estimators of the scale parameter with respect to the conjugate and noninformative priors under Stein’s loss function, and the corresponding PESLs. The quantities (prior, posterior, three posterior expectations, two Bayes estimators, and two PESLs) and expressions of the variance and scale parameters of the model for the conjugate and noninformative priors are summarized in two tables. After that, the numerical simulations are carried out to exemplify the theoretical findings. Finally, we calculate the Bayes estimators and the PESLs of the variance and scale parameters of the S&P 500 monthly simple returns for the conjugate and noninformative priors.


2021 ◽  
Author(s):  
Akinola Oladiran Adepetun ◽  
◽  
Bamidele Mustapha Oseni ◽  
Olusola Samuel Makinde ◽  
◽  
...  

In recent time, the Bayesian approach to randomized response technique has been used for estimating the population proportion especially of respondents possessing sensitive attributes such as induced abortion, tax evasion and shoplifting. This is done by combining suitable prior information about an unknown parameter of the population with the sample information for the estimation of the unknown parameter. In this study, possibility of using a transmuted Kumaraswamy prior is raised, yielding a new Bayes estimator for estimating population proportion of sensitive attribute for Warner’s randomized response technique. Consequently, the proposed Bayes estimator with transmuted Kumaraswamy prior is compared with existing Bayes estimators developed with a simple beta and Kumaraswamy priors in terms of their mean square error. The proposed estimator competes well with the existing estimators for some values of population proportion. The performances of Bayes estimators were also compared using some benchmark data.


Symmetry ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 2112
Author(s):  
Ahmed Elshahhat ◽  
Berihan R. Elemary

Censoring mechanisms are widely used in various life tests, such as medicine, engineering, biology, etc., as they save (overall) test time and cost. In this context, we consider the problem of estimating the unknown xgamma parameter and some survival characteristics, such as reliability and failure rate functions in the presence of adaptive type-II progressive hybrid censored data. For this purpose, the maximum likelihood and Bayesian inferential approaches are used. Using the observed Fisher information under s-normal approximation, different asymptotic confidence intervals for any function of the unknown parameter were constructed. Using the gamma flexible prior, Bayes estimators against the squared-error loss were developed. Two procedures of Bayesian approximations—Lindley’s approximation and Metropolis–Hastings algorithm—were used to carry out the Bayes estimates and to construct the associated credible intervals. An extensive simulation study was implemented to compare the performance of the different methods. To validate the proposed methodologies of inference—two practical studies using datasets that form engineering and chemical fields are discussed.


2021 ◽  
Vol 34 (4) ◽  
pp. 116-129
Author(s):  
Abtisam J. Kadhim ◽  
Huda A. Rasheed

In this paper, Bayes estimators for the shape and scale parameters of Weibull distribution have been obtained using the generalized weighted loss function, based on Exponential priors. Lindley’s approximation has been used effectively in Bayesian estimation. Based on theMonte Carlo simulation method, those estimators are compared depending on the mean squared errors (MSE’s).


Author(s):  
Assia Chadli ◽  
Sara Kermoune

In this paper, we consider inference problems including estimation for a Rayleigh Pareto (RP) distribution under progressively type-II right censored data. We use two approaches, the classical maximum likelihood approach and the Bayesian approach for estimating the distribution parameters and the reliability characteristics. Bayes estimators and corresponding posterior risks (PR) have been derived using different loss functions (symmetric and asymmetric). The estimators cannot be obtained explicitly, so we use the method of Monte Carlo. Finally, we use the integrated mean square error (IMSE) and the Pitman closeness criterion to compare the results of the two methods.


2021 ◽  
Vol 19 (1) ◽  
pp. 2-17
Author(s):  
Gyan Prakash

In the present study, the Pareto model is considered as the model from which observations are to be estimated using a Bayesian approach. Properties of the Bayes estimators for the unknown parameters have studied by using different asymmetric loss functions on hybrid censoring pattern and their risks have compared. The properties of maximum likelihood estimation and approximate confidence length have also been investigated under hybrid censoring. The performances of the procedures are illustrated based on simulated data obtained under the Metropolis-Hastings algorithm and a real data set.


Author(s):  
Sofi Mudasir Ahad ◽  
Sheikh Parvaiz Ahmad ◽  
Sheikh Aasimeh Rehman

In this paper, Bayesian and non-Bayesian methods are used for parameter estimation of weighted Rayleigh (WR) distribution. Posterior distributions are derived under the assumption of informative and non-informative priors. The Bayes estimators and associated risks are obtained under different symmetric and asymmetric loss functions. Results are compared on the basis of posterior risk and mean square error using simulated and real life data sets. The study depicts that in order to estimate the scale parameter of the weighted Rayleigh distribution use of entropy loss function under Gumbel type II prior can be preferred. Also, Bayesian method of estimation having least values of mean squared error gives better results as compared to maximum likelihood method of estimation.


Sign in / Sign up

Export Citation Format

Share Document