scholarly journals Harmonic numbers, harmonic series and zeta function

2018 ◽  
Vol 4 (2) ◽  
pp. 122-157
Author(s):  
Ahmed Sebbar

AbstractThis paper reviews, from different points of view, results on Bernoulli numbers and polynomials, the distribution of prime numbers in connexion with the Riemann hypothesis. We give an account on the theorem of G. Robin, as formulated by J. Lagarias. The other parts are devoted to the series $\mathcal{M}{i_s}(z) = \sum\limits_{n = 1}^\infty {{{\mu (n)} \over {{n^s}}}{z^n}} $. A significant result is that the real part f of$$\sum {{{\mu (n)} \over n}{e^{2in\pi \theta }}}$$is an example of a non-trivial real-valued continuous function f on the real line which is 1-periodic, is not odd and has the property $\sum\nolimits_{h = 1}^n {f(h/k) = 0}$ for every positive integer k.

2007 ◽  
Vol 2007 ◽  
pp. 1-5 ◽  
Author(s):  
Chunsheng Ma

This paper is concerned with a class of stochastic processes or random fields with second-order increments, whose variograms have a particular form, among which stochastic processes having orthogonal increments on the real line form an important subclass. A natural issue, how big this subclass is, has not been explicitly addressed in the literature. As a solution, this paper characterizes a stochastic process having orthogonal increments on the real line in terms of its variogram or its construction. Our findings are a little bit surprising: this subclass is big in terms of the variogram, and on the other hand, it is relatively “small” according to a simple construction. In particular, every such process with Gaussian increments can be simply constructed from Brownian motion. Using the characterizations we obtain a series expansion of the stochastic process with orthogonal increments.


1973 ◽  
Vol 15 (2) ◽  
pp. 243-256 ◽  
Author(s):  
T. K. Sheng

It is well known that no rational number is approximable to order higher than 1. Roth [3] showed that an algebraic number is not approximable to order greater than 2. On the other hand it is easy to construct numbers, the Liouville numbers, which are approximable to any order (see [2], p. 162). We are led to the question, “Let Nn(α, β) denote the number of distinct rational points with denominators ≦ n contained in an interval (α, β). What is the behaviour of Nn(α, + 1/n) as α varies on the real line?” We shall prove that and that there are “compressions” and “rarefactions” of rational points on the real line.


1851 ◽  
Vol 1 (1) ◽  
pp. 40-46
Author(s):  
Edwin James Farren

The term scholar, as current in the English language, has two extreme acceptations, tyro and proficient; or what the later Greeks fancifully termed the alpha and omega of acquirement. If we attempt to trace the steps by which even the adult student of any especial branch of professional or literary knowledge has fairly passed the boundary defined by the one meaning in passing on to that position denoted by the other, it will commonly be found, that in place of that lucid order, that straight line from point to point, which theory and resolve generally premise, the real order of acquirement has been desultory—the real line of progression, circuitous and uncertain.


2019 ◽  
Vol 489 (3) ◽  
pp. 227-231
Author(s):  
G. M. Feldman

According to the Heyde theorem the Gaussian distribution on the real line is characterized by the symmetry of the conditional distribution of one linear form of independent random variables given the other. We prove an analogue of this theorem for linear forms of two independent random variables taking values in an -adic solenoid containing no elements of order 2. Coefficients of the linear forms are topological automorphisms of the -adic solenoid.


2020 ◽  
Vol 2020 ◽  
pp. 1-3
Author(s):  
Alireza Ranjbar-Motlagh

The purpose of this article is to study the isometries between vector-valued absolutely continuous function spaces, over compact subsets of the real line. Indeed, under certain conditions, it is shown that such isometries can be represented as a weighted composition operator.


1987 ◽  
Vol 36 (3) ◽  
pp. 469-474 ◽  
Author(s):  
Bau-Sen Du

Let I be the unit interval [0, 1] of the real line. For integers k ≥ 1 and n ≥ 2, we construct simple piecewise monotonic expanding maps Fk, n in C0 (I, I) with the following three properties: (1) The positive integer n is an expanding constant for Fk, n for all k; (2) The topological entropy of Fk, n is greater than or equal to log n for all k; (3) Fk, n has periodic points of least period 2k · 3, but no periodic point of least period 2k−1 (2m+1) for any positive integer m. This is in contrast to the fact that there are expanding (but not piecewise monotonic) maps in C0(I, I) with very large expanding constants which have exactly one fixed point, say, at x = 1, but no other periodic point.


1969 ◽  
Vol 16 (3) ◽  
pp. 205-214
Author(s):  
Gavin Brown

Let n be a positive integer. We give an elementary construction for the nth variation, Vn(f), of a real valued continuous function f and prove an analogue of the classical Jordan decomposition theorem. In fact, let C[0, 1] denote the real valued continuous functions on the closed unit interval, let An denote the semi-algebra of non-negative functions in C[0, 1] whose first n differences are non-negative, and let Sn denote the difference algebra An - An. We show that Sn is precisely that subset of C[0, 1] on which Vn(f)<∞. (Theorem 1).


1966 ◽  
Vol 18 ◽  
pp. 616-620 ◽  
Author(s):  
Kenneth D. Magill

It is assumed that all topological spaces discussed in this paper are Hausdorff. By a compactification αX of a space X we mean a compact space containing X as a dense subspace. If, for some positive integer n, αX — X consists of n points, we refer to αX as an n-point compactification of X, in which case we use the notation αn X. If αX — X is countable, we refer to αX as a countable compactification of X. In this paper, the statement that a set is countable means that its elements are in one-to-one correspondence with the natural numbers. In particular, finite sets are not regarded as being countable. Those spaces with n-point compactifications were characterized in (3). From the results obtained there it followed that the only n-point compactifications of the real line are the well-known 1- and 2-point compactifications and the only n-point compactification of the Euclidean N-space, EN (N > 1), is the 1-point compactification.


2009 ◽  
Vol 2009 ◽  
pp. 1-18 ◽  
Author(s):  
Erik Talvila

IfFis a continuous function on the real line andf=F′is its distributional derivative, then the continuous primitive integral of distributionfis∫abf=F(b)−F(a). This integral contains the Lebesgue, Henstock-Kurzweil, and wide Denjoy integrals. Under the Alexiewicz norm, the space of integrable distributions is a Banach space. We define the convolutionf∗g(x)=∫−∞∞f(x−y)g(y)dyforfan integrable distribution andga function of bounded variation or anL1function. Usual properties of convolutions are shown to hold: commutativity, associativity, commutation with translation. Forgof bounded variation,f∗gis uniformly continuous and we have the estimate‖f∗g‖∞≤‖f‖‖g‖ℬ&#x1D4B1;, where‖f‖=supI|∫If|is the Alexiewicz norm. This supremum is taken over all intervalsI⊂ℝ. Wheng∈L1, the estimate is‖f∗g‖≤‖f‖‖g‖1. There are results on differentiation and integration of convolutions. A type of Fubini theorem is proved for the continuous primitive integral.


Sign in / Sign up

Export Citation Format

Share Document