New fixed point results in bv(s)-metric spaces

2020 ◽  
Vol 70 (2) ◽  
pp. 441-452
Author(s):  
Tatjana Došenović ◽  
Zoran Kadelburg ◽  
Zoran D. Mitrović ◽  
Stojan Radenović

Abstract Z. D. Mitrović and S. Radenović introduced in [The Banach and Reich contractions in bv(s)-metric spaces, J. Fixed Point Theory Appl. 19 (2017), 3087–3095] a new class of generalized metric spaces and proved some fixed point theorems in this framework. The purpose of this paper is to consider other kinds of contractive mappings in bv(s)-metric spaces, and show how the work in the new settings differs from the one in standard metric and b-metric spaces. Examples show the usefulness of the obtained results.

2018 ◽  
Vol 12 (2) ◽  
pp. 389-400 ◽  
Author(s):  
Ishak Altun ◽  
Bessem Samet

In this paper, we present a new class of pseudo Picard operators in the setting of generalized metric spaces introduced recently in [M. Jleli and B. Samet: A generalized metric space and related fixed point theorems, Fixed Point Theory Appl., (2015) 2015:61]. An example is provided to illustrate the main result.


2018 ◽  
Vol 85 (3-4) ◽  
pp. 396
Author(s):  
Gopi Prasad ◽  
Ramesh Chandra Dimri

<p>In this paper, we establish coincidence point theorems for contractive mappings, using locally g-transitivity of binary relation in new generalized metric spaces. In the present results, we use some relation theoretic analogues of standard metric notions such as continuity, completeness and regularity. In this way our results extend, modify and generalize some recent fixed point theorems, for instance, Karapinar et al [J. Fixed Point Theory Appl. 18(2016) 645-671], Alam and Imdad [Fixed Point Theory, in press].</p>


2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
Maryam A. Alghamdi ◽  
Chi-Ming Chen ◽  
Erdal Karapınar

We introduce the notion of generalized weaker(α-ϕ-φ)-contractive mappings in the context of generalized metric space. We investigate the existence and uniqueness of fixed point of such mappings. Some consequences on existing fixed point theorems are also derived. The presented results generalize, unify, and improve several results in the literature.


2021 ◽  
Vol 37 (2) ◽  
pp. 345-354
Author(s):  
ALEXANDRU-DARIUS FILIP

In this paper we discuss similar problems posed by I. A. Rus in Fixed point theory in partial metric spaces (Analele Univ. de Vest Timişoara, Mat.-Inform., 46 (2008), 149–160) and in Kasahara spaces (Sci. Math. Jpn., 72 (2010), No. 1, 101–110). We start our considerations with an overview of generalized metric spaces with \mathbb{R}_+-valued distance and of generalized contractions on such spaces. After that we give some examples of conversions between generalized metric spaces and standard metric spaces with applications in fixed point theory. Some possible applications to theoretical informatics are also considered.


2017 ◽  
Vol 8 (1) ◽  
pp. 111
Author(s):  
Ahmed H. Soliman ◽  
M. A. Ahmed ◽  
A. M. Zidan

In this work, we introduce a new generalized metric space called b-generalized metric spaces (shortly, b-G.M.S). Also, we establish some fixed point results for a contraction of rational type in b-G.M.S. Some interesting examples are also given.


2012 ◽  
Vol 2012 ◽  
pp. 1-7 ◽  
Author(s):  
Chi-Ming Chen ◽  
W. Y. Sun

We introduce the notion of weaker(ϕ,φ)-contractive mapping in complete metric spaces and prove the periodic points and fixed points for this type of contraction. Our results generalize or improve many recent fixed point theorems in the literature.


2013 ◽  
Vol 2013 ◽  
pp. 1-6 ◽  
Author(s):  
Bessem Samet ◽  
Calogero Vetro ◽  
Francesca Vetro

In 2005, Mustafa and Sims (2006) introduced and studied a new class of generalized metric spaces, which are called G-metric spaces, as a generalization of metric spaces. We establish some useful propositions to show that many fixed point theorems on (nonsymmetric) G-metric spaces given recently by many authors follow directly from well-known theorems on metric spaces. Our technique can be easily extended to other results as shown in application.


Sign in / Sign up

Export Citation Format

Share Document