scholarly journals Kernel estimation for Lévy driven stochastic convolutions

2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Fabienne Comte ◽  
Valentine Genon-Catalot

Abstract We consider a Lévy driven stochastic convolution, also called continuous time Lévy driven moving average model X ⁢ ( t ) = ∫ 0 t a ⁢ ( t - s ) ⁢ d Z ⁢ ( s ) X(t)=\int_{0}^{t}a(t-s)\,dZ(s) , where 𝑍 is a Lévy martingale and the kernel a ( . ) a(\,{.}\,) a deterministic function square integrable on R + \mathbb{R}^{+} . Given 𝑁 i.i.d. continuous time observations ( X i ⁢ ( t ) ) t ∈ [ 0 , T ] (X_{i}(t))_{t\in[0,T]} , i = 1 , … , N i=1,\dots,N , distributed like ( X ⁢ ( t ) ) t ∈ [ 0 , T ] (X(t))_{t\in[0,T]} , we propose two types of nonparametric projection estimators of a 2 a^{2} under different sets of assumptions. We bound the L 2 \mathbb{L}^{2} -risk of the estimators and propose a data driven procedure to select the dimension of the projection space, illustrated by a short simulation study.

1981 ◽  
Vol 18 (1) ◽  
pp. 94-100 ◽  
Author(s):  
S. G. Kapoor ◽  
P. Madhok ◽  
S. M. Wu

Time series modeling technique is used to model a series of sales data in which seasonality causes distinct spike peaks. The analysis of actual sales data shows that the seasonality in the data can be approximated by a deterministic function and the stochastic component is a sixth-order autoregressive moving average model. Use of the combined deterministic and stochastic models to derive the minimum mean squared forecast yields reliable results.


Sign in / Sign up

Export Citation Format

Share Document