motion artifact
Recently Published Documents


TOTAL DOCUMENTS

743
(FIVE YEARS 206)

H-INDEX

46
(FIVE YEARS 7)

2022 ◽  
Vol 74 ◽  
pp. 103483
Author(s):  
Md-Billal Hossain ◽  
Hugo F. Posada-Quintero ◽  
Youngsun Kong ◽  
Riley McNaboe ◽  
Ki H. Chon

2022 ◽  
Vol 72 ◽  
pp. 103301
Author(s):  
Ruisen Huang ◽  
Kunqiang Qing ◽  
Dalin Yang ◽  
Keum-Shik Hong

2022 ◽  
Author(s):  
Bruce R Hopenfeld

Background: Obtaining reliable rate heart estimates from waist based electrocardiograms (ECGs) poses a very challenging problem due to the presence of extreme motion artifacts. The literature reveals few, if any, attempts to apply motion artifact cancellation methods to waist based ECGs. This paper describes a new methodology for ameliorating the effects of motion artifacts in ECGs by specifically targeting ECG peaks for elimination that are determined to be correlated with accelerometer peaks. This peak space cancellation was applied to real world waist based ECGs. Algorithm Summary: The methodology includes successive applications of a previously described pattern-based heart beat detection scheme (Temporal Pattern Search, or TEPS) that can also detect patterns in other types of peak sequences. In the first application, TEPS is applied to accelerometer signals recorded contemporaneously with ECG signals to identify high-quality accelerometer peak sequences (SA) indicative of quasi-periodic motion likely to impair identification of peaks in a corresponding ECG signal. The process then performs ECG peak detection and locates the closest in time ECG peak to each peak in an SA. The differences in time between ECG and SA peaks are clustered. If the number of elements in a cluster of peaks in an SA exceeds a threshold, the ECG peaks in that cluster are removed from further processing. After this peak removal process, further QRS detection proceeds according to TEPS. Experiment: The above procedure was applied to data from real world experiments involving four sessions of walking and jogging on a dirt road for approximately 20-25 minutes. A compression shirt with textile electrodes served as the ground truth recording. A textile electrode based chest strap was worn around the waist to generate a single channel signal upon which to test peak space cancellation/TEPS. Results: Both walking and jogging heart rates were generally well tracked. In the four recordings, the percentage of 5 second segments within 10 beats/minute of reference was 96%, 99%, 92% and 96%. The percentage of segments within 5 beats/minute of reference was 86%, 90%, 82% and 78%. There was very good agreement between the RR intervals associated with the reference and waist recordings. For acceptable quality segments, the root mean square sum of successive RR interval differences (RMSSD) was calculated for both the reference and waist recordings. Next, the difference between waist and reference RMSSDs was calculated (∆RMSSD). The mean ∆RMSSD (over acceptable segments) was 4.6 m, 5.2 ms, 5.2 ms and 6.6 ms for the four recordings. Conclusion: Given that only one waist ECG channel was available, and that the strap used for the waist recording was not tailored for that purpose, the proposed methodology shows promise for waist based sinus rhythm QRS detection.


2022 ◽  
Vol 20 (1) ◽  
pp. 011702
Author(s):  
Sungchul Kim ◽  
Evgenii Kim ◽  
Eloise Anguluan ◽  
Jae Gwan Kim

ACTA IMEKO ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 117
Author(s):  
Pamela Zontone ◽  
Antonio Affanni ◽  
Alessandro Piras ◽  
Roberto Rinaldo

In this paper, we address the problem of possible stress conditions arising in car drivers, thus affecting their driving performance. We apply various Machine Learning (ML) algorithms to analyse the stress of subjects while driving in an urban area in two different situations: one with cars, pedestrians and traffic along the course, and the other characterized by the complete absence of any of these possible stress-inducing factors. To evaluate the presence of a stress condition we use two Skin Potential Response (SPR) signals, recorded from each hand of the test subjects, and process them through a Motion Artifact (MA) removal algorithm which reduces the artifacts that might be introduced by the hand movements. We then compute some statistical features starting from the cleaned SPR signal. A binary classification ML algorithm is then fed with these features, giving as an output a label that indicates if a time interval belongs to a stress condition or not. Tests are carried out in a laboratory at the University of Udine, where a car driving simulator with a motorized motion platform has been prearranged. We show that the use of one single SPR signal, along with the application of ML algorithms, enables the detection of possible stress conditions while the subjects are driving, in the traffic and no traffic situations. As expected, we observe that the test individuals are less stressed in the situation without traffic, confirming the effectiveness of the proposed slightly invasive system for detection of stress in drivers.


2021 ◽  
Author(s):  
Kianoosh Kazemi ◽  
Juho Laitala ◽  
Iman Azimi ◽  
Pasi Liljeberg ◽  
Amir M. Rahmani

<div>Accurate peak determination from noise-corrupted photoplethysmogram (PPG) signal is the basis for further analysis of physiological quantities such as heart rate and heart rate variability. In the past decades, many methods have been proposed to provide reliable peak detection. These peak detection methods include rule-based algorithms, adaptive thresholds, and signal processing techniques. However, they are designed for noise-free PPG signals and are insufficient for PPG signals with low signal-to-noise ratio (SNR). This paper focuses on enhancing PPG noise-resiliency and proposes a robust peak detection algorithm for noise and motion artifact corrupted PPG signals. Our algorithm is based on Convolutional Neural Networks (CNN) with dilated convolutions. Using dilated convolutions provides a large receptive field, making our CNN model robust at time series processing. In this study, we use a dataset collected from wearable devices in health monitoring under free-living conditions. In addition, a data generator is developed for producing noisy PPG data used for training the network. The method performance is compared against other state-of-the-art methods and tested in SNRs ranging from 0 to 45 dB. Our method obtains better accuracy in all the SNRs, compared with the existing adaptive threshold and transform-based methods. The proposed method shows an overall precision, recall, and F1-score 80%, 80%, and 80% in all the SNR ranges. However, these figures for the other methods are below 78%, 77%, and 77%, respectively. The proposed method proves to be accurate for detecting PPG peaks even in the presence of noise.</div>


2021 ◽  
Author(s):  
Hema Kumar Goru ◽  
B Ramakrishna ◽  
Damodar Panigrahy

Abstract Surface Electroencephalography (EEG) is a non-invasive technique used for monitoring and recording the electrical activity of the human brain. Typically, the raw and unprocessed EEG signals are contaminated with various types of physiological artifacts originated from eye blinks and limb moments due to long haul monitoring. The removal of such low frequency motion artifacts in preprocessing techniques could potentially improves the accuracy of diagnosis. In this viewpoint, a multi-resolution analysis such as discrete wavelet transform (DWT) with empirical mode decomposition (EMD) is presented to filter the motion artifacts from the EEG signal. Initially, the low frequency components were separated from EEG signal using DWT decomposition technique and the same are passed to EMD to find intrinsic mode functions (IMFs). Using iterative thresholding algorithm the noisy IMF’s are filtered out, and these denoised approximated components are utilized to reconstruct the motion artifact free EEG signal. The proposed technique shows 15.3218 dB of △SNR, 41.9859% of Relative root mean square error (RRMSE) and the percentage reduction in correlation coefficient (%η) of 65.8213 by using Physionet data base.


NeuroImage ◽  
2021 ◽  
pp. 118838
Author(s):  
Sydney Kaplan ◽  
Dominique Meyer ◽  
Oscar Miranda-Dominguez ◽  
Anders Perrone ◽  
Eric Earl ◽  
...  

2021 ◽  
Vol 20 (1) ◽  
Author(s):  
Qiong Chen ◽  
Yalin Wang ◽  
Xiangyu Liu ◽  
Xi Long ◽  
Bin Yin ◽  
...  

Abstract Background Heart rate (HR) is an important vital sign for evaluating the physiological condition of a newborn infant. Recently, for measuring HR, novel RGB camera-based non-contact techniques have demonstrated their specific superiority compared with other techniques, such as dopplers and thermal cameras. However, they still suffered poor robustness in infants’ HR measurements due to frequent body movement. Methods This paper introduces a framework to improve the robustness of infants’ HR measurements by solving motion artifact problems. Our solution is based on the following steps: morphology-based filtering, region-of-interest (ROI) dividing, Eulerian video magnification and majority voting. In particular, ROI dividing improves ROI information utilization. The majority voting scheme improves the statistical robustness by choosing the HR with the highest probability. Additionally, we determined the dividing parameter that leads to the most accurate HR measurements. In order to examine the performance of the proposed method, we collected 4 hours of videos and recorded the corresponding electrocardiogram (ECG) of 9 hospitalized neonates under two different conditions—rest still and visible movements. Results Experimental results indicate a promising performance: the mean absolute error during rest still and visible movements are 3.39 beats per minute (BPM) and 4.34 BPM, respectively, which improves at least 2.00 and 1.88 BPM compared with previous works. The Bland-Altman plots also show the remarkable consistency of our results and the HR derived from the ground-truth ECG. Conclusions To the best of our knowledge, this is the first study aimed at improving the robustness of neonatal HR measurement under motion artifacts using an RGB camera. The preliminary results have shown the promising prospects of the proposed method, which hopefully reduce neonatal mortality in hospitals.


Sign in / Sign up

Export Citation Format

Share Document