Hinderungspotential der internen Rotation, Dipolmoment und Quadrupolkopplungskonstanten aus dem Mikrowellenspektrum des 4-Methyl-Pyridins

1967 ◽  
Vol 22 (11) ◽  
pp. 1738-1743 ◽  
Author(s):  
H. D. Rudolph ◽  
H. Dreizler ◽  
H. Seiler

The microwave rotational spectrum of 4-methyl-pyridine (γ-picoline) has been investigated in the region from 8 to 37 GHz. The three types of lines to be expected for a molecule of this symmetry and with a very low sixfold barrier hindering internal rotation of the methyl top have been found: m=0; | m | ≠0, ≠ 3 n; | m |=3 n. From low-/ lines m=0 (a-type transitions) the rotational constants A′ (less methyl top) =6 082.145, B=2 524.850, C=1 783.991 MHz, the dipole moment μα=2.70 D, and the nuclear quadrupole coupling constants for the 14N nucleus χaa= —4.82, χbb—χcc= —2.8 MHz have been determined. From the wide splitting of the lines | m | = 3, | K | = 1 the potential barrier has been derived as V6=13.51 cal/mole, a value which is very close to those previously deduced for toluene and para-substituted toluenes.

1970 ◽  
Vol 25 (1) ◽  
pp. 25-35 ◽  
Author(s):  
H. Dreizler ◽  
H.D. Rudolph ◽  
H. Mäder

Abstract The microwave rotational spectrum of 2-methyl-pyridine (a-picoline) has been investigated in the region from 6 to 30 kmc/s. From the three lowest states of internal rotation m=0, 1, 2 the three-and sixfold components V3 and V6 of the potential barrier hindering the internal rotation have been determined to be V3= (258,4 ± 0,1) cal/mole and V6=(-11,8± 0,1) cal/mole. From the splitting of low-J lines m=0 the nuclear quadrupole coupling constants for the 14N nucleus have been derived as χaa= (-0,33 ± 0,02) mc/s, χbb = (-2,86 ± 0,02) mc/s, χcc = (+3,19 ± 0,02) mc/s. The hyperfine structure of rotational transitions in excited states of internal rotation could also be accounted for with these coupling constants. The dipole moment components derived from Stark-effect measurements in the ground torsional state m = 0 are μa = (0,72 ± 0,01) Debye and μb - (1,71 ± 0,02) Debye.


1993 ◽  
Vol 48 (12) ◽  
pp. 1219-1222 ◽  
Author(s):  
U. Kretschmer ◽  
H. Dreizler

Abstract We investigated the 33S nuclear quadrupole coupling of thiazole- 33S in natural abundance by molecular beam Fourier transform microwave spectroscopy. In addition the 14N nuclear quadrupole coupling could be analyzed with high precision. We derived the rotational constants A = 8529.29268 (70) MHz, B = 5427.47098 MHz, and C = 3315.21676 (26) MHz, quartic centrifugal distortion constants and the quadrupole coupling constants of 33S χaa = 7.1708 (61) MHz and χbb= -26.1749 (69) MHz and of 14N χ aa = -2.7411 (61) MHz and χbb = 0.0767 (69) MHz.


1996 ◽  
Vol 51 (10-11) ◽  
pp. 1110-1112 ◽  
Author(s):  
Jens-Uwe Grabow ◽  
Masao Onda ◽  
Helmut Dreizler

Abstract The rotational spectrum of 33S 2,2-dimethylthiirane with its 33S nuclear quadrupole coupling hyperfine structure in the range 8.9 to 20.0 GHz and its analysis is reported. The rotational constants are A = 5507.4663(3), B = 3440.58395(18), and C = 2978.5723(3) MHz. The 33 S quadrupole coupling constants are χaa = -22.6390(23), χbb = 47.1830(50), and χcc = -24.5440(50) MHz.


1988 ◽  
Vol 43 (7) ◽  
pp. 657-661 ◽  
Author(s):  
N. Heineking ◽  
H. Dreizler

AbstractWe redetermined the rotational and the chlorine-35 and nitrogen-14 nuclear quadrupole coupling constants of 3-chloropyridine. The values are A = 5839.5330(12) MHz, B = 1604.1875(6) MHz, and C = 1258.3121 (5) MHz for the rotational constants, and χaa(Cl) = - 72.255(19) MHz, χbb(Cl) = + 38.500(13) MHz, χcc(Cl) = + 33.755(23) MHz and χaa(N) = - 0.009(13) MHz, χbb(N) = - 3.473(10) MHz, χCC(N) = + 3.482(16) MHz for the chlorine-35 and nitrogen-14 nuclear quadrupole coupling constants, respectively.Application of double resonance modulation technique is shown to greatly simplify the assign­ment of hyperfine structure components even of weak rotational transitions.


1991 ◽  
Vol 46 (9) ◽  
pp. 770-776 ◽  
Author(s):  
Kirsten Vormann ◽  
Helmut Dreizler ◽  
Jens Doose ◽  
Antonio Guarnieri

AbstractThe boron and nitrogen hyperfine structure in the rotational spectra of two aminoborane isotopomers, 11 BH2NH2 and 10BH2NH2, has been investigated and the quadrupole coupling constants of boron 10B, 11B and nitrogen 14N have been determined. We get the following results for the nuclear quadrupole coupling constants: χaa(11B) = -1.684 (14) MHz, χbb(11B) = -2.212 (11) MHz, χcc(11B) = 3.896(11) MHz, χaa(10B) = -3.481 (11) MHz, χbb(10B) = -4.623 (14) MHz, χCC(10B) = 8.104 (14) MHz and xaa(14N) = 0.095 (9) MHz, χbb(14N) = 2.091 (8) MHz, χcf4 (14N)=-2.186 (8) MHz. These nitrogen quadrupole coupling constants are those of the 11BH2 NH2 isotopomer. Additionally we were able to determine two out of the three spin rotation coupling constants caa, cbb, and ccc of boron, caa(11 B = 55.2 (26) kHz, cbb(11B) = 6.62 (36) kHz, caa (10B) = 15.26 (69) kHz and cbb(10B) = 4.94 (70) kHz. The spin rotation coupling constants ccc had to be fixed to zero in both cases. Furthermore we measured the rotational spectra in the mm-wave region to determine all quartic and several sextic centrifugal distortion constants according to Watson's A and S reduction


Sign in / Sign up

Export Citation Format

Share Document