Structure of Molten Sn-Zn-Alloys by Means of Neutron Diffraction

1978 ◽  
Vol 33 (10) ◽  
pp. 1151-1153 ◽  
Author(s):  
Walter Knoll ◽  
Siegfried Steeb

Abstract Neutron diffraction experiments were performed with four molten Sn-Zn-alloys and the two molten elements Sn and Zn. The total structure factors and the pair correlation functions are given. The observed small angle scattering leads to the result that pairs of equal atoms predominate within the range of medium concentrations.

1983 ◽  
Vol 38 (4) ◽  
pp. 395-398 ◽  
Author(s):  
W. Knoll ◽  
P. Lamparter ◽  
S. Steeb

Neutron diffraction experiments were performed with five molten Bi-Zn-alloys and the two molten elements Bi and Zn. The total structure factors and the pair correlation functions are given. The concentration dependence of the experimental nearest neighbour distances and the experimental coordination numbers is in accordance with the segregation behaviour prevailing in these melts.


1995 ◽  
Vol 50 (9) ◽  
pp. 831-836
Author(s):  
R. M. Hagenmayer ◽  
P. Lamparter ◽  
S. Steeb

Abstract The molten alloys Au28.5Mn71.5 and Au68Mn32 are investigated with the energy dispersive X-ray diffraction method which works rather fast so that the evaporation loss of Mn from the molten alloys is kept low. From the observed prepeak follows that both melts are compound-forming but the gold rich melt Au68Mn32 shows only 50% of the short range order existent within the Au28.5Mn71.5 melt. Total structure factors and total pair correlation functions are discussed.


1983 ◽  
Vol 38 (3) ◽  
pp. 329-335 ◽  
Author(s):  
P. Lamparter ◽  
W. Martin ◽  
S. Steeb ◽  
W. Freyland

Abstract By neutron diffraction experiments the total structure factors and the total pair correlation functions of liquid Cs-Sb alloys containing 85, 75, 65, and 50 at% Cs, respectively, were determined. The structural results confirm the non metallic properties of Cs-Sb melts.The correspondence of the nearest neighbour atomic arrangement in liquid Cs75Sb25 and in the solid compound semiconductor Cs3Sb suggests a similar type of bonding, namely by valence bonds and ionic forces simultaneously. The stability of this compound in the molten state leads to a microsegregation tendency between compound forming regions and excess Cs in the concentration range from pure Cs up to 25 at% Sb, which is established by a small angle scattering effect.Proceeding from Cs75Sb25 to Cs50Sb50, a continuous change in the structure takes place. Covalently bonded Sb chains are formed just as found in the corresponding solid compounds ASb (A = alkali metal). An additional diffraction peak in front of the main peak of the structure factors within this composition range implies the formation of rather large molecular clusters in the alloys.


1990 ◽  
Vol 45 (5) ◽  
pp. 627-638
Author(s):  
S. Seehafer ◽  
P. Lamparter ◽  
S. Steeb

Abstract Amorphous and quasicrystalline samples of Al84Mn16 and Al84V16 were produced by sputtering and melt-spinning, respectively. From X-ray and neutron-diffraction-results the total structure factors were evaluated. For amorphous as well as for quasicrystalline Al84V16 the partial SAl-Al- and SAl-V-structure factors were obtained, which yield the corresponding partial pair correlation functions, the atomic distances, and the partial coordination numbers. Also some information concerning the partial Bhatia-Thornton correlation functions could be obtained. Both the amorphous and the quasicrystalline Al-V-alloys show a linear expansion by a factor of 1.03 compared to the corresponding Al-Mn-alloy. The two amorphous alloys can be designed as isomorphous, whereas the quasicrystalline ones show pronounced deviations in the distance between unequal atoms. The shortest atomic distance in amorphous Al84V16 is 2.69 A, being,formed by Al-V-pairs with a coordination number 2. The nearest Al-Al-distance amounts to 2.84 A with a coordination number 8. The partial density-concentration correlation function clearly deviates from the hard sphere model. With the quasicrystalline specimens, the isomorphous substitution of Mn- and V-atoms is not perfect. The Al-V-correlation is split up, and this is not observed for the Al-Mn-correlation. Comparison of the amorphous and the corresponding quasicrystalline alloy shows some similarities


Sign in / Sign up

Export Citation Format

Share Document