zn alloys
Recently Published Documents


TOTAL DOCUMENTS

1279
(FIVE YEARS 162)

H-INDEX

56
(FIVE YEARS 8)

2022 ◽  
pp. 110061
Author(s):  
Cheng Wang ◽  
Xiao Liu ◽  
Di Mei ◽  
Min Deng ◽  
Yufeng Zheng ◽  
...  

Scanning ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Jing Bai ◽  
Yan Xu ◽  
Qizhou Fan ◽  
Ruihua Cao ◽  
Xingxing Zhou ◽  
...  

Zn and Zn-based alloys exhibit biosafety and biodegradation, considered as candidates for biomedical implants. Zn-0.02 wt.% Mg (Zn-0.02 Mg), Zn-0.05 wt.% Mg (Zn-0.05 Mg), and Zn-0.2 wt.% Mg (Zn-0.2 Mg) wires (Φ 0.3 mm) were prepared for precision biomedical devices in this work. With the addition of Mg in Zn-xMg alloys, the grain size decreased along with the occurrence of Mg2Zn11 at the grain boundaries. Hot extrusion, cold drawing, and annealing treatment were introduced to further refining the grain size. Besides, the hot extrusion and cold drawing improved the tensile strength of Zn-xMg alloys to 240-270 MPa while elongation also increased but remained under 10%. Annealing treatment could improve the elongation of Zn alloys to 12% -28%, but decrease the tensile strength. Furthermore, Zn-xMg wires displayed an increase in degradation rate with Mg addition. The findings might provide a potential possibility of Zn-xMg alloy wires for biomedical applications.


Coatings ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1425
Author(s):  
Yixuan Shi ◽  
Lijing Yang ◽  
Lucai Wang ◽  
Qingke Zhang ◽  
Xinglong Zhu ◽  
...  

Recent studies have indicated a great demand to optimize the biocompatibility properties of pure Zn as an implant material. For this purpose, CaZn2(PO4)2·2H2O (CaZnP) was prepared using hydrothermal treatment (HT) combined with micro-arc oxidation (MAO) on pure Zn substrate to generate biodegradable implants. The polarization test and electrochemical impedance spectroscopy indicated that the MAO1−HT coating could modulate the corrosion behavior of MAO1 by filling the crevice between the coating and the substrate. Immersion test evaluation revealed that the osteogenic properties of MAO1−HT coating were better than that of pure Zn substrate, as evidenced by the molar ratio of Ca and P, which increased after soaking in simulated body fluid (SBF) for up to 10 days. In addition, L-929 cells cultured in the 100%, 50%, and 25% extracts of MAO1−HT coated samples exhibited excellent cytocompatibility. Meanwhile, cell adhesion was promoted on the surface with high roughness generated during MAO and HT processes. In summary, the calcified coatings improved biocompatibility and adjusted the degradation rates of pure Zn, broadening the application of Zn alloys.


2021 ◽  
Vol 2094 (2) ◽  
pp. 022039
Author(s):  
L I Zaynullina ◽  
I V Alexandrov

Abstract This paper presents the results of the microstructure and crystallographic texture investigations of the Cu-Zn alloys system with different stacking fault energies (SFE) subjected to severe plastic deformation (SPD) by equal channel angular pressing (ECAP) and subsequent flat rolling. It is shown that ECAP leads to the formation of an ultrafine-grained (UFG) structure. Further flat rolling is accompanied by a decrease in the size of structural elements and the formation of nanoscale twins, which are more likely to be detected in an alloy with a lower SFE. As the deformation degree increases, the main crystallographic textures components of the investigated alloys become Brass and Goss components.


2021 ◽  
pp. 131213
Author(s):  
Wenyuan Gong ◽  
Mengjing Xie ◽  
Yuan Wu ◽  
Jishan Zhang
Keyword(s):  

2021 ◽  
pp. 133797
Author(s):  
Xingrui Chen ◽  
Qi Zou ◽  
Qichi Le ◽  
Mingxing Zhang ◽  
Ming Liu ◽  
...  

2021 ◽  
Vol 2103 (1) ◽  
pp. 012099
Author(s):  
L I Zaynullina ◽  
V D Sitdikov ◽  
G F Sitdikova ◽  
I V Alexandrov

Abstract Within the framework of experimental investigations and computer modeling using the viscoplastic self-consistent (VPSC) model of a material plastic flow, the regularities of preferential orientations formation were established, the proportion of certain texture components was estimated, and existing slip systems (SS) and twinning systems (TS) were identified for equal-channel angular pressing (ECAP) of copper alloys depending on the stacking fault energy (SFE).


Sign in / Sign up

Export Citation Format

Share Document